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EXECUTIVE SUMMARY

Variety registration and protection of barley véide is carried out in several European
Member States (EU MS), and requires distinctnesisormity and stability (DUS) testing of
new varieties. Developments in high throughputoggping have provided the opportunity
to explore the application of marker technologyhis process. The overall objective of this
project was to examine the potential uses of DNAeewar markers (specifically SNPs) to
assess the feasibility of a UPOV Model 2 approaClalibration of threshold levels for

molecular characteristics against the minimum distan traditional characteristics’.

The experimental approaches were to statisticalfyyse available phenotypic and genotypic

data to:

» Identify whether a correlation exists between pligpio and genotypic distances

* Quantify distances measured from markers

* Phenotype against a common standard derived froovikrpedigree relationships
within the dataset

* Adopt approaches from genomic selection to pregienotype from the genome-

wide marker set.

For this purpose, a subset of data from a previomliaborative project on barley was used.
This consisted of 431 winter and spring varietieth ywhenotype data from UK DUS trials
comprising 33 characteristics, together with gepetgtata from 3072 SNP markers.

Distance estimates were calculated using both thleaular and morphological data sets and
compared. For Model 2 to succeed, good correldigtween molecular and morphological
distances is required: it should be possible tdotke distances from molecular markers to
set a threshold for Distinctness such that the sa@eesions are madesing morphological
distances. Results are more positive than previiudies. All correlations between
phenotypic and genotypic distances were large,imgrfgom correlation coefficient (r) = 0.55
to r = 0.66 (the closer to +1 or -1, the more dipsige two variables are related). Comparison
of phenotypic and genotypic distances amongst tiasigrouped by kinship showed that the

phenotypic and genotypic distances of these graoplated well. Examination of data



sub-sets with increasing numbers of markers shawatthere is a ceiling after which the
correlations do not improve. To investigate thegillity of breaking through this ceiling,

genomic prediction was used and correlations dabup= 0.86 were achieved.

To test how the positive correlations between phgno and genotypic distances affect
decision making for Distinctness, an arbitrary shi@d was set in order to simulate 10% of
varieties as ‘non distinct’ using the morphologidata (only listed varieties were used in the
project and are all distinct). This set of ‘nostdict’ varieties was used for comparisons with
varying thresholds for the genotypic data. Whennth distinct’ varieties were identified
using genetic distances, fewer than half thesesttasi were non distinct in the morphological
distance set. When larger variety sets were ugegkplore this result further, it was still
possible to include varieties that were ‘similaridaone variety that was non distinct by
phenotypic distance among the varieties selectedlistinct using genotypic distance.
Complete convergence with the total that are natirdit by morphology is not achieved

even when 93% of the variety set are selected.

Results have demonstrated that the quality andtqyar molecular data now available can
produce good correlations between molecular andphmbogical distances. However in
practical terms the UPOV Model 2 approach could etadopted without a level of risk.
Nevertheless, correlations between morphologicdlraarker based estimates of distance are
greater than reported and we have demonstrategrtmise of approaches based on high
density SNP markers. To identify a better modeg suggested that further work in this area
should include: i) a large range of European bavlayeties; ii) varieties that have been
found to be non distinct using traditional methods; validation and harmonisation of
scoring of characteristics; iv) varieties genotypeth an expanded marker set to fill in gaps;
v) assessment of methods to combine markers widngilgpic scores within the testing

systems operational with Europe.
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INTRODUCTION AND BACKGROUND

The use of molecular markers for Distinctness, amniity and Stability (DUS) testing has
been discussed by the International Union for thetdetion of New Varieties of Plants
(UPOV) and other interested parties for severatsyaaw and three options were recognised
by the Working Group for Biochemical and Moleculachniques (BMT) working group in
2002, and more recently revised in the documergs®te Uses of Molecular Markers in the
Examination of Distinctness, Uniformity and Statlyil(BMT/DUS) in which the Options are
referred to as Models:

* Molecular characteristics as a predictor of tradial characteristics. Use of
molecular characteristics which are directly linkedraditional characteristics (gene
specific markers). Model 1

» Calibration of threshold levels for molecular clchegistics against the minimum
distance in traditional characteristics. Model 2

* Development of a new system. Model 3

The UPOV Convention requires all new varieties ¢éocbmpared with existing varieties of
‘common knowledge’. Within the European Union (Eddhtext, this should at the very least
include all relevant varieties with European rightsd/or listed on the Common Catalogue
and should be as comprehensive as is practicaflgilple. In the case of barley, and many
other agricultural crop species, this results ilarge variety reference collection which is
increasing every year as more varieties are listélde country of testing and within the EU.
In order to maintain the strength of protectionrecdtl by Plant Breeder's Rights (PBR), the
principle of comparing new varieties with thosecommon knowledge must be upheld, and
therefore some means of ‘managing’ reference dadles is highly desirable to avoid the
logistical and financial implications of having itaclude and directly compare all common
knowledge varieties with candidate varieties. @reans of such management would be to
use molecular markers (DNA profiling) to comparevnarieties with the profiles of those in
a database, eliminate those which do not need twobwared in a field trial (according to

pre-defined criteria) and then only grow the masiilar varieties.

According to the UPOV BMT Guidelines, ‘Calibratiasf threshold levels for molecular
characteristics against the minimum distance iwliticmal characteristics’ would be an

acceptable method for use in the management aferefe collections, provided there would
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be no significant shift in the typical minimum distes as measured by traditional
characteristics. Previous research aimed at asgeigss approach has shown little or no
correlation between phenotypic and genetic dis®ntd. A reason for this lack of

correlation could be that these previous studies hesed very small numbers of markers
(mostly less than 30). Low genome coverage mdaighe studies were much less likely to
identify significant correlations than if a largember of markers with very good genome

coverage were used.

At the UPOV Working Group for Biochemical and Maldar Techniques (BMT) meeting in
Ottawa in May 2010, it was reported that the UPQ¢Hhnical Committee had considered the
conclusions of the BMT Review Group and recognittexineed for further work to examine
the assumptions made for this approach and to weptioee knowledge of the relationship
between morphological and molecular distances. reltie currently no working model
acceptable to UPQV for ‘Calibration of thresholgldis for molecular characteristics against
the minimum distance in traditional characteristidge to the lack of correlation seen in
previous studies with oilseed rape and potato. dine of this project was to test for a
correlation between morphological distances andeowér distances in barley while

employing methods with higher genome coverage thase previously used.

DUS testing of barley within the European Union jEduntries follows CPVO-TP 019/2
with additional National guidelines Guideline chasaistics for National Listing. Although
the characteristics to be recorded in barley ane tarmonised, there are varying approaches
to the testing adopted in different Member StatéS)( and various sets of ‘national’
characteristics used. Testing follows Article 7t 1991 UPOV Convention which says
that a variety shall be considered Distinct “itifs clearly distinguishable from any other
variety whose existence is a matter of common kadgg at the time of the filing of the
application’. Common knowledge is broadly definedrecluding all known varieties, i.e. any
variety entered into or subject to an application PBR, varieties grown commercially,
varieties held in publicly accessible referencdentions, or of which there is a published

description.

A major problem for all countries carrying out DiE3ts is the requirement to compare new
varieties with an increasing number of existingetas. In order to maintain the efficacy of

the system for granting PBR, the reference cobecthould be as large as possible. Whilst
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in theory, the full reference collection to be usedcomparison purposes for any candidate
variety is the known world-wide collection of vaties of the species, in practice, the number
of varieties to be included in a growing test canréduced. UPOV TG/1/3 (2002) allows
that ‘a systematic individual comparison may notréguired with all varieties of common
knowledge. For example, where a candidate varsesylfficiently different, in the expression
of its characteristics, to ensure that it is didtifrom a particular group (or groups) of
varieties of common knowledge, it would not be iseey for a systematic individual
comparison with the varieties in that group (orsiogroups).” UPOV TG/1/3 (2002)
continues by indicating that the selection can Uz further narrowed down by using
documented variety descriptions and the informatiothe most similar varieties supplied by
the breeder in the Technical Questionnaire whiatopanies the application for testing.
Thus a testing authority can use a range of souwteasformation to limit the number of

varieties from the reference collection which mhstused in the field growing ted).(

One possible way of limiting the number of refemarieties to be grown is to use DNA
profiling as a management tool. By comparing thefiles of candidate varieties with those
of existing varieties maintained in a central dats it might be possible both to eliminate
from further testing those varieties which do remjuire comparison in a field trial (according
to an agreed set of criteria) and to select theetras most similar to the candidate for close

comparison in field test$").

State of the art — molecular markers and DUS testin

A whole range of studies on markers within the efgrregistration process has been carried
out on different species. Potential uses of mdéedechnology include their application in
the management of reference collections, for wai@éntification, infringement cases and

examining essential derivation.

In a study of grapevin€)( 991 cultivars were assayed with nine microsigdlbci. Pair wise
comparisons showed these markers offered uniqudifidation for 352 accessions. The
remaining 639 accessions were assayed with a futthéoci. The authors conclude that it is
possible to calibrate a minimum distance betweeretias using microsatellites in a variety
set that included closely related varieties (pareptogeny, full sibs, half sibs, grandparents
etc.) with a difference greater than four allelasail but 10 out of 119,316 pair wise
comparisons. However, essentially derived varigi#3Vs) could not be differentiated to the
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same degree, and a difference of only two alleles wbserved between varieties. The
robustness of decisions made using an inter vadetiance of two alleles needs to be
tempered by the observation of intra variety ddfezes of one allele. The authors concluded
that variety pairs that exceed a minimum threshisidg molecular methods may be declared
Distinct (D) but where no or few differences in mallar profiles exist, further testing is
required either by the use of additional markerbyocomparing morphologies. This equates
to an approach allowing an initial screen that woucrease efficiency of DUS testing by
eliminating the number of comparisons that wouldch® be made in the field but would not
allow full replacement of the current test systéirhe authors recommend that minimum
distances using markers can only be establishedriexgntally, on a crop by crop basis,

taking into consideration the inter and intra vigrieariability of the test system used.

An alternative experimental approach was used udystdurum wheat lines’) where a
collection of 69 breeding lines from seven crossese assessed for distinctness using 17
morphological markers from CPVO protocols sele@sdariable among the parental lines, a
suite of 99 SSR markers and AFLP assays using catibns of two and three selective
bases in seven primer combinations. The correldietwveen the molecular markers (SSRs
and AFLP) was good (r = 0.89) while the correlatlmtween morphology and molecular
markers was moderate (SSRs, r = 0.66; AFLP, r 2)0Motwithstanding these correlations,
the authors recognised difficulties in assessingu$ing a ‘Model 2’ approach because of the
wide range of variation for molecular marker diffieces among varieties around or beneath
the ‘D’ threshold using morphological markers. Omoere, the authors concluded that the
calibration of molecular and morphological metheadsild allow a declaration of ‘D’ where
molecular profiles differ greatly in the style gb@oach but that field testing could not be

eliminated.

Investigations into the correlations between molpiy and molecular based distances in
maize {) examined a collection of 41 inbred lines compgsi3 publicly available varieties
and 28 breeders’ lines. Morphological descriptiomese calculated using 34 characters from
the UPOV guidelines and molecular distances caledlasing data for 28 SSR loci. In this
instance the correlation between morphology andeoutdr markers was poor (r = 0.21).
Once more the authors conclude that molecular made a possible addition to the DUS
testing procedures but their implementation depermas) deciding on the type and number
of markers to be used as well as setting the tbitdstalues for distinctness.



A large, international set of varieties was examiime a CPVO co-funded study of oilseed
rape (CPV5766 Final Report) using 335 records fldds testing authorities in Denmark,
France, Germany and the UK. The collection was typed with 29 SSR markers. The
outcome of this study was far more disappointingthwthe correlation between
morphological and molecular marker based distarfedisng between 0.03 and 0.08,
depending on the methods used. Clearly these sesfiltr little prospect for successfully

implementing a UPOV BMT Model 2 approach.

However, there is an expectation of improved catr@hs between morphological and
molecular marker based distances using high demtymorphism data, such as SNP
markers generated using a SNP array. An SSR stmayucted in a set of 40 winter wheat
varieties showed that pair-wise discrimination @aged as more SSR loci were considered
(NIAB unpublished data). The initial rate of incseain discrimination was rapid but tailed
off as marker numbers increased until additionatkexs offered no advantage. This can be
explained by linkage between markers and populatiarcture within the variety set. It is to
be expected that the correlations between morplualbgand molecular marker based
distances would improve in a similar way, reachanglateau when an optimum number of
markers have been used to calculate molecularndista While the minimum number of
markers required should be determined empiricallyeach species, it is possible that the

marker numbers used in previous studies may bestitmal.

DUS testing of barley is carried out in several EI$ according to the CPVO technical
protocol for barley (CPVO-TP 019/2), however slightifferent approaches are taken by
different EOs. A total of 28 characters are rodtir@bserved or measured in the UK. All of
these are phenotypic characteristics, howeverrelgubresis (a characteristic in CPVO-TP
019/2) is sometimes used to establish distinctmdsere there is an indication of a small
difference in phenotype between similar varieti@®. date, research on barley using
molecular markers as an aid to DUS testing has peamising. Research into the use of
diagnostic markers for the vernalization requiretemarley has been successful in isolating
a diagnostic assay for winter and spring seasg@pabkt At the BMT meeting in 2008 a paper
was presented on the use of molecular distancescombination with phenotypic
characteristics within GAIA (pre-selection softwateveloped by GEVES, France) which
showed that molecular markers can contribute to rtfamagement of the spring barley
reference collectior?),



Also at the BMT meeting in 2008, a similar papeswaesented on a method for combining
phenotypic data with molecular data in maize, usB®&JA. This was further considered at
the BMT Review Group meeting in April 2009. It wesncluded that this proposal ‘System
for combining phenotypic and molecular distanceth@énmanagement of variety collections’,
for the management of variety collections, was ptaide within the terms of the UPOV
Convention and would not undermine the effectiversdgrotection offered under the UPOV
system. It was also agreed that the proposal septed a model that might be applicable to
other crops provided that the elements of the palpwaere equally valid. The BMT Review
Group concluded that it was important to considea@ase-by-case basis whether the model
would be applicable, and noted that some of theetes of the proposal were similar to the
previously-named Model 2 approach ‘Calibration difreshold levels for molecular
characteristics against the minimum distance iditicmal characteristics’. However, the
BMT Review Group concluded that it would not be ympiate to classify the proposal under
Model 2 and agreed that the proposal should bereefdo as the ‘System for combining
phenotypic and molecular distances in the managerokrvariety collections’. These

conclusions were presented at the BMT meeting ig RG4.0.

Recently, in barley, Food and Environment ReseAgdncy (Fera), PVS funding permitted
NIAB to explore the possibility of using a Modeltyipe approach solely for the purpose of
predicting seasonal growth type. A series of paions and reports established that while
winter and spring types are easily recognizedntieh rarer alternative type required more
complex assays{*3. The Fera project defined a protocol which cdtyeitlentifies most
alternative types from molecular genotype and flagem for field evaluation to
unambiguously class them as either ‘winter’ oreaiative’, thus providing the option to
avoid most vernalization trials in most years. Rssaf the project were presented at the
UPOV BMT in May 2010. The UPQV position was thattidaal authorities could decide to
implement if the new system complied with the criteset out in document BMT/DUS Draft
3.

Significantly, seasonal growth habit is not theyoDlUS characteristic for which underlying
genetic variation has been described at the geetilebarley. The row number locug;sl,
on chromosome 2H, was cloned in 20&%. (Just three independent mutations in the gene

have abolishedrsl suppression of lateral spikelet fertility, andreéfere the row number can
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be unambiguously assigned using a diagnostic mislecoarker assay. The nud gene was
more recently clonedY. For all lines investigated, the naked (hullgsis¢notype in barley
is governed by a single mutation in an ERF trapsiom factor. Recent work at NIAB has
shown a 16bp deletion in the barley homologue ef tmize R/B anthocyanin regulatory
genes is completely diagnostic for the ability toguce anthocyanin coloration in awns and
auricles 19, bringing the number of DUS characters (includime ‘growing’ character)

which can be directly predicted from genotype tarfo

NIAB was recently a partner in a collaborative patjcalled Association Genetics of UK
Elite Barley (AGOUEB) alongside the Scottish CropsBarch Institute (SCRI), University of
Birmingham, barley breeding companies and induspatners from end-user industries.
The AGOUEB project used association genetics tosedis the genetic control of
characteristics by looking at the variation (at DA level) at sites across the whole barley
genome and by taking a retrospective look at thveants of genes that exist within UK
varieties and the genes that control importantasttaristics. Association of phenotypic and
genotypic data was used to determine patterns métmgecontrol of quantitative, qualitative

and pseudo-qualitative characteristics.

Furthermore, the AGOUEB project has defined vergcgme locations (and hence closely
linked flanking SNP markers) in the barley genome d further 3 characteristics (rachilla
hair length, hairiness of leaf sheath, and verfitnabw hair) and we predict that the identities
of these three major genes and the pertinent@ltaliants will be identified in the very near
future. If these studies come to a successfullasim, the characteristics covered will be
exclusively qualitative (2- or 3-state) charactiess and their low number will allow an

accurate but limited classification of barley gelaspn.

Model 2 approaches do not require complete undetistg of the genetic architecture and
variation of each individual DUS characteristic,daare therefore more likely to enter

productive use in addressing the issues that fat® @sting systems such as:

1. The identification of the most similar referencarieties for comparison prior to the
growing trial

2. The rationalisation of trial design

3. The harmonisation of DUS systems at the inteynat level.
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OBJECTIVES

Clearly, better techniques for the use of molecaolarkers within the variety testing process
have become available over the last two or thregsyeThe overall rationale of this project
was thus to test an alternative method of calibgatnarker distances against phenotypic
distances, potentially on a characteristic by ottarsstic basis using new techniques and data
available.

Due to the specific developments within the AGOU#kEBject outlined above, namely,
1. Identification of genes underlying DUS charast@nd their variants;

2. Generation of a genome-wide SNP genotypinggiatfand a database which includes 479
UK barley varieties with high quality SNP data a1l loci as well as their full DUS

descriptions, a major opportunity presented itgelfe-open the study of how well genetic
distance, as measured by molecular markers, caticpnghenotypic distance. The main

objective of this project was to calculate the gienand phenotypic distances between
varieties using a combination of statistical methadd, for the purposes of DUS testing, to
determine whether a correlation exists betweertioeto evaluate the Model 2 approach in

barley. We addressed this objective by testinghwuotheses:

* Genotypic and phenotypic distance measures fot afsarieties will have a strong

positive correlation to each other.

* Varieties shown as ‘similar’ using phenotypic dmstas will also be shown as

‘similar’ using genotypic distances.

This project used existing data from the collabeeatAGOUEB research programme to
investigate the UPOV Model 2 approach in DUS testi barley with the aim of testing
whether decisions made under a new molecular tgststem would be the same as those
made under the existing morphological testing syst€he molecular testing system must
meet the quality criteria set out by UPOV in tHEUIDELINES FOR DNA-PROFILING'.

Ideally decisions made using a molecular systemlavexactly mirror those made under the

current system. (Figure 1, upper graph). Shouldrélationship between the two testing
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methods be anything less than perfect, there wdnelda zone of ‘uncertainty’ where
ambiguous decisions might be made (Figure 1, lgwaph). Quantifying these relationships

and the extent of ambiguity were the objectivethsf study.

However, it is important not to overemphasise thpartance of simple correlation between
phenotypic and genotypic distances. The correlatiafeady obtained may be ‘fit for
purpose’. The success of UPOV Model 2, which deper setting a molecular threshold
that would replace the current minimum phenotypstashce, depends on the correlation in
the region around the minimum phenotypic distaratber than on the overall correlation.
Plots of model data with correlation coefficiente gdhown in Figure 1. Both cases use a
minimum phenotypic distance and molecular threslblavo. It is clear that the distribution
of variation results in better decisions by molacumethods where the scatter and
uncertainty of the correlation is greater. Thiamsarea that was explored within this study.
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Figure 1: Calibration of molecular against morphological disances under UPOV BMT Model 2.
The upper graphillustrates decision making under a perfect correlion between molecular anc
morphological distances. The lower graph illustrate possible uncertainty where the correlatiol
between molecular and morphological distances is Bwoptimal
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METHODS AND RESULTS

The AGOUEB data used within this project was maglef3072 SNP marker loci developed
from more than 1500 genes (one to three SNPs pe)de genotype a collection of 500
barley varieties selected from UK registrationlgriaver the past 20 year$)( Phenotypic
data originating from the DUS trials for the sanexipd for 579 winter and spring barley
lines were collated for this project. The majordl descriptions were derived from data
collected by NIAB in the course of DUS examinatiortkough a small number of
descriptions were obtained by bilateral purchasktharefore DUS tested in another country

and obtained from the examination office of thairdoy.

The morphological data derived from DUS testing pased 33 characteristics assessed for
579 varieties. The number of characteristics watuced to 28 to reflect only those
characteristics included in CPVO-TP/019/2 (201@g{ble J).

The morphological data was made up of quantitatharacteristics converted into notes (e.g.
plant height), pseudo-qualitative characteristiogverted into notes (e.g. ear shape) and
qualitative characteristics (e.g. grain: husk pnesg This data set includes five grouping
characteristics, omitting a sixth found in UPOV/T@G/10 (Awns: anthocyanin coloration of
tips (characteristic 8): presence / absence). iwitte NIAB implementation of the DUS test
system a stringency criterion, ‘band width’, is dses a filter when making comparisons of
candidate varieties with other varieties. The ‘bandth’ represents a minimum difference
threshold for each characteristic that must bewtetn calculating differences. The variety
comparisons must meet a certain threshold (a catibmof minimum differences for each

characteristic) in order to be considered as distin

Table 1: Characteristics used in the DUS-test andrpparation of descriptions. ‘Band width’

represents a stringency criterion for each charactistic representing the minimum difference
that may be used within the NIAB test system. * Thee quantitative characteristics appear in
UPOQOV TG/19/10 alongside qualitative characteristic$or the same character.

Characteristic upPoOVv Details Band
No width

Plant: growth habit 1 Quantitative characteristic measure coded as a 1-9 scale 3

Lowest leaves: hairiness of leaf 2 Grouping characteristic scored as Present (9) or Absent (1) 1

sheaths

Flag leaf: intensity of anthocyanin 3* Quantitative characteristic measure coded as a 1-9 scale 3

coloration of auricles

Plant: frequency of plants with 5 Quantitative characteristic measure coded as a 1-9 scale 3

recurved flag leaves

Flag leaf: glaucosity of sheath 6 Quantitative characteristic measure coded as a 1-9 scale 3

Time of ear emergence 7 Quantitative characteristic measure coded as a 1-9 scale 2
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Characteristic UPOVv Details Band

No width
Awns: intensity of anthocyanin 9* Quantitative characteristic measure coded as a 1-9 scale 3
coloration of tips
Ear: glaucosity 10 Quantitative characteristic measure coded as a 1-9 scale 3
Ear: attitude 11 Quantitative characteristic measure coded as a 1-9 scale 3
Plant: length 12 Quantitative characteristic measure coded as a 1-9 scale 2
Ear: number of rows 13 Grouping characteristic scored as Two-rows (1) or More than 1
two rows (2)
Ear: shape 14 Pseudo-qualitative characteristic scored as one of three 3
character states (tapering (3), parallel (5) or fusiform (7)).
Ear: density 15 Quantitative characteristic measure coded as a 1-9 scale 3
Ear: length 16 Quantitative characteristic measure coded as a 1-9 scale 3
Awn: length 17 Quantitative characteristic measure coded as a 1-9 scale 2
Rachis: length of first segment 18 Quantitativeharacteristic measure coded as a 3-7 scale 3
Rachis: curvature of first segment 19 Quantitative characteristic measure coded as a 1-9 scale 3
Ear: development of sterile - Qualitative characteristic scored as one of two character states 1
spikelets (none or rudimentary (1) or full (2)).
Sterile spikelet: attitude 20 Quantitative characteristic measure coded as a 1-3 scale 2
Median spikelet: length of glume 21 Quantitative characteristic measure coded as a 1-3 scale 2
and its awn relative to grain
Grain: rachilla hair type 22 Grouping characteristic scored as short (1) or long (2) 1
Grain: husk 23 Qualitative characteristic scored as absent (1) or present (9) 1
Grain: anthocyanin coloration of 24 Quantitative characteristic measure coded as a 1-9 scale 3
nerves of lemma
Grain: spiculation of inner lateral 25 Quantitative characteristic measure coded as a 1-9 scale 3
nerves of dorsal side of lemma
Grain: hairiness of ventral furrow 26 Grouping characteristic scored as absent (1) or present (9) 1
Grain: disposition of lodicules 27 Qualitative characteristic scored as frontal (1) or clasping (2) 1
Kernel: colour of aleuron layer 28 Quantitative characteristic scored as one of three character 2
states (whitish (1), weakly coloured (2), strongly coloured (3)).
Seasonal type 29 Grouping characteristic scored as one of three character states 2

(Winter type (1), alternative type (2), Spring type (3)).

The genotypic markers were discovered using pybéekilable barley expressed sequence
tags (ESTs) which were converted to a series oiitha Golden Gate SNP arrays capable of
generating 3072 assays, averaging more than 2 ms&rkkacross the approximately 1,100-
cM barley genome (14, 17). This represents the rnostprehensive resource of its kind
currently available in barley and the highest dignsf markers used in an investigation of
UPOV Model 2.

These disparate datasets were united for this stugyoduce a final set of 431 varieties with
both phenotypic and genotypic data. The intersedietween the genotypic and phenotypic
datasets included 465 varieties. The final datavastdrawn from among the 465 varieties by
rejecting varieties where there were missing datarfore than ten DUS test characteristics

and varieties with more than 20% missing genotypi.

The data were stored using a ‘Microsoft Accessaldase. The data structures are shown in
Figure 2.
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Figure 2: Database structures used to store and mage the data within the project

Further subsets were drawn from the genotype datarhoving markers from among the full
set {Table 9. The data sets were generated using a serieQbf skatements within the
RODBC package of the R statistics package.

Table 2: Genotype datasets selected in order to calate various genotypic distances

Data set

Full data set

No missing data

No missing data, no
monomorphic

No missing data, no
monomorphic, minor allele
frequency >0.1

No missing data, no
monomorphic, minor allele
frequency <0.1

No missing data, no
monomorphic, minor allele
frequency >0.05

No missing data, no
monomorphic, minor allele
frequency <0.05

5% missing data

5% missing data, no
monomorphic

5% missing data, no
monomorphic, minor allele
frequency >0.1

5% missing data, no
monomorphic, minor allele
frequency <0.1

5% missing data, no
monomorphic, minor allele
frequency >0.05

5% missing data, no
monomorphic, minor allele
frequency <0.05

Evenly distributed markers

Number
of loci
3072
1562
1274
905
369

1021

254

2654

2262

1554

708

1803

459

944

Criterion

None
All loci with any missing data removed
As above with all monomorphic loci removed

No missing data, no monomorphic, including loci with the minor
allele frequency between 0.1 and 0.499

No missing data, no monomorphic, excluding loci with the minor
allele frequency between 0.1 and 0.499

No missing data, no monomorphic, including loci with minor allele
frequency between 0.05 and 0.499

No missing data, no monomorphic, excluding loci with minor allele
frequency between 0.05 and 0.499

All loci with more than 5% missing data removed
As above with all monomorphic loci removed

5% missing data, no monomorphic

Where only loci with the minor allele present at a frequency between
0.1 and 0.499

5% missing data, no monomorphic

Where only loci with the minor allele present at a frequency between
0.001 and 0.1

5% missing data, no monomorphic

Where only loci with the minor allele present at a frequency between
0.05 and 0.499

5% missing data, no monomorphic

Where only loci with the minor allele present at a frequency between
0.001 and 0.05

Markers are clustered by map position, in groups of between 1 — 38
markers. Markers were selected at random to represent each map
position. Multiple sets of makers were generated
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Data set Number  Criterion

of loci
O Optimised evenly distributed 944 The set of markers selected from among the multiple sets of evenly
markers distributed markers (N) for optimum correlation with morphological
distances
Q Optimised random markers 339 The set of markers selected from among full data set (A) for optimum

correlation with morphological distances

There was a high proportion of missing phenotygitadn this final set. The risk of low inter
variety distances introduced by missing data wasiged by imputation. The methods for
imputation of missing data were developed by meditatisticians to handle data-sets that
include incomplete survey results. The imputechdeged to replace missing values should
not substantially change the results of analysisherconclusions drawn from the results.
Multiple imputed data-sets are therefore generatetithe results of analysis of each data-set
compared or pooled in order to ensure that the lasioms drawn from analysis are
defensible. The work flow is described schematychilow in Figure 3. The process starts
with an incomplete data-set. Missing data werdamgul by imputed values to generate a
number of complete data-sets, each of which isyard| generating a number of results sets.
The multiple results sets are pooled and conclgsidrawn. In this case, we imputed
phenotype data by random sampling and for eachactarstic, missing data were replaced
by values drawn at random from the existing dataltible sets of phenotype data were
generated in this way and distance matrices cdaaifar each of them and the results held in
a three dimensional array. The distance matricee weoled by taking an arithmetic mean

over the third dimension to calculate a conventitiwva dimensional distance matrix.

The data analysis was carried out using MicrosafteE ASReml| ) and the R Statistical
Package (2010) including packages mice: Multivariatputation by Chained Equatiort) (
and cluster: Cluster Analysis Extendét).(These packages were used to calculate the simple
genetic distance matrices: Manhattan and EuclidB&astances and simple phenotypic
distances: Manhattan and Modified Manhattan Distangnd Gower's Coefficient (1971).
The Manhattan Distance was used to calculate pyeicatistances as it reflects the decision
making process used in DUS examinations. The MedliManhattan Distance is a variation
to the Manhattan Distance such that the valueeptir-wise comparison for a characteristic
must meet or exceed a threshold value, termedbidued’ width’, if it is to be added to the
inter variety distance. The value of the band widtlset by experts at a level that ensures
calculated differences are not an artefact of vianan the observation and recording system
within and between years. Gower’s coefficient wale&ed for its suitability when handling

data sets that include qualitative, pseudo qualtéaand quantitative data.
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IMPUTATION ANALYSIS POOLING

incomplete mutiply analysis final results
data imputed data results

Figure 3: A schematic of the work flow through theimputation process. (Figure from van
Buuren and Oudshoorn, 1999)

Validation of phenotypic datasets

Two data sets were used to calculate phenotypiardiss, the raw phenotype data (P1) and a
set where the missing values have been replacadyation (P2). These data were, in turn,
used to calculate three simple phenotypic distandéanhattan Distances, Modified
Manhattan Distance and Gower's Coefficient, gemayadix distance matrices. The data set
with imputed missing data (P2) was validated byralation with the raw phenotype data
(P1). This validation showed the distance matraadsulated using P1: Raw phenotype data
and P2: Phenotypes with imputed missing data aigelstrongly with one another (Table

3). These correlations are represented graphicafygure 4.

Table 3: Comparisons of correlations between phengpic distances calculated using Dataset P1.:
Raw phenotype data and Dataset P2: Phenotype witimputed missing data

P1: Raw phenotype

Gower Manhattan Modified Manhattan

P2: Phenotype with ~ COWer 0.981 0.929 0.851
imputed missing Manhattan 0.920 0.977 0.920
data Modified Manhattan 0.865 0.937 0.961
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Figure 4: Scatter plots comparing distances calcutad using data sets P1Raw phenotype data
and P2 Phenotype with imputed missing data using Geer’'s coefficient (left), Manhattan
distance (centre) and Modified Manhattan distancer{ght)

The average of the distances calculated using Rt ptenotype data (Gower = 0.239,
Manhattan = 37.3, Modified Manhattan = 22.9) arasistently lower than those calculated
using P2 phenotype with imputed missing data (Gow@r248, Manhattan = 38.5, Modified
Manhattan = 26.1) and these differences were sogmif (p < 0.001). The pattern seen in the
three scatter plots suggests that the differentedes the distances calculated using the two

data sets is least for either high or low distances

Internal validation tests were designed to assesaumber of imputations needed to produce
a robust data set. Four values were tested fonahgber of imputations (5, 10, 20, and 100)
and the deviation among data sets created usirsg tredues by carrying out this process in
99 iterations. The results of this validation tekbwed that the mean distances computed
were the same in all cases though the precisiamndrthat mean improved as the number of

imputations increased. One hundred imputations weeel in practice.
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Minimum number of markers

Results from previous studies have shown a rangswélations between phenotypic and
genotypic distances. Here we report the resulta sfudy where the number of available
markers is at least an order of magnitude grehser the number of markers used in previous
studies. In order to investigate the effect of nearkumbers on the correlation between
phenotypic distance and genotypic distance, a ransit of genotypic markers was selected
from among Data Set B (No missing data) and DatatS5€5% missing data) in turn.
Correlations were calculated between the genotgistances (Euclidean and Manhattan
distance) and the phenotypic distances ((Gower, hdtian and Modified Manhattan
distance) for each random selection. The numbeamiom selections used was 15620 for
Data Set B: No missing data (1562 markers) and @664 Data Set H (5% missing data
(2654 markers). The calculated correlations webaltged with the number of markers

selected and the results were plotted (Figure 5).

Figure 5 shows a clear pattern in every casealhjtithe correlations between the genotypic
distances and the phenotypic distances increasetimatnumber of markers. As the number
of markers increases further, the correlation \valpiateau. Once the correlation has reached
a plateau, the scatter of correlations around #&raevalue reduces with increasing marker
numbers. The low initial correlation values whenairmumbers of markers are used to
calculate genetic distances offers an explanatorthie poor correlations observed in earlier
studies. The data presented in Figure 5 suggestts timinimum of 300 - 400 markers should
be selected from Dataset A (No missing data) ar@-8Q2000 from Dataset H (5% missing

data) in order to achieve acceptable accuracy whkmlating correlations.

Correlations between phenotypic and genotypic dists

The success or failure of the UPOV Model dependsart, on upholding the hypothesis

which states:

* Genotypic and phenotypic distance measures fot afsarieties will have a
strong positive correlation to each other.

Here we present data showing the extent of coroaldtetween the subsets of phenotypic and
genotypic data using different methods to calcutiistance matrices. The sets have been
chosen to allow an investigation of factors thatynadfect the quality of the distance
measures. We have used the raw phenotype datauwithodification from the data
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abstracted from our ‘live’ DUS examination databaSencerns that the extent of missing
data within this set might introduce errors int@ thnalysis were addressed by creating a

second data set where missing values were replaitednputed data.

The correlations between phenotypic and genotypitaices are all positive. The
correlations observed are greater than 0.55 weleitteption of values obtained for genotype
data sets E, G, K and M (defined in Table 2). THese data sets were selected to investigate
whether correlations between phenotypic and gemotgistances improve if genetic loci
harbouring rare alleles were used to calculatgémetic distances. The results in Table 4 and
Table 5 clearly show that this is not the casés [tossible that these low correlations are a
consequence of selecting a small number of mafkers369 markers, G = 254 markers, K =
708 markers, M = 459 markers). When correlatioaleutated using these data sets are
compared with the scatters shown in Figure 5, Hieutated values are systematically lower
than the values that would be obtained by drawingequivalent numbers of markers at

random.

The correlations follow a pattern when considerthg phenotypic distances, such that
correlations using Gower Distance > Manhattan Dista> Modified Manhattan Distance
and the correlations calculated using P2 (Phenotigta with imputed missing values) are
greater than those obtained by using P1 (Phenatgpedata). The correlations when
considering the genotypic distances such that MsamiaDistances > Euclidean Distances
though this pattern breaks down for the small data G and M.

These observed correlations in Table 4 and Talaslee%ll positive but may not be described
as strong. Excepting genotypic data sets E, G, Mnthe correlations fall into the range
0.62 — 0.66 when Gower’s Distance is used as tlaqgilpic distance, 0.61 — 0.63 when
Manhattan Distance is used and 0.58 — 0.60 whenifdddVianhattan Distance is used.
While these correlations are not weak, they off@ly @quivocal support for the hypothesis
which states: ‘Genotypic and phenotypic distancasuees for a set of varieties will have a

strong positive correlation to each other.’
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Table 4: Correlations between phenotypic and genopjc distances, raw phenotype data

Data set P1: Raw phenotype data

Gower Manhattan Modified Manhattan
Geonotypic distance: Manhattan

A Full data set 0.638 0.622 0.596
No missing data 0.638 0.621 0.594
No missing data, no monomorphic 0.638 0.621 0.594
No missing data, no monomorphic, minor allele frequency 0.630 0.615 0.594
>0.1 ' ' '

E  No missing data, no monomorphic, minor allele frequency 0244 0.231 0.181
<0.1 ‘ ' '

F  No missing data, no monomorphic, minor allele frequency 0.638 0.621 0.596
>0.05 ' ' '

G No missing data, no monomorphic, minor allele frequency
<0.05 0.151 0.142 0.103

H 5% missing data 0.639 0.623 0.597

| 5% missing data, no monomorphic 0.640 0.624 0.597

J 5% missing data, no monomorphic, minor allele frequency
01 0.640 0.624 0.597

K 5% missing data, no monomorphic, minor allele frequency 0.263 0.250 0.207
<0.1 ' ' '

L 5% missing data, no monomorphic, minor allele frequency 0.637 0.621 0.596
>0.05 ' ' '

M 5% missing data, no monomorphic, minor allele frequency 0.224 0.210 0.169
<0.05 ‘ ' '
Geonotypic distance: Euclidean

A Full data set 0.626 0.611 0.579
No missing data 0.628 0.612 0.578
No missing data, no monomorphic 0.628 0.612 0.578
No missing data, no monomorphic, minor allele frequency 0621 0.607 0.580
>0.1 ' ' '

E  No missing data, no monomorphic, minor allele frequency 0232 0.220 0172
<0.1 ‘ ' '

F  No missing data, no monomorphic, minor allele frequency 0.628 0.613 0.581
>0.05 ' ' '

G No missing data, no monomorphic, minor allele frequency 0161 0.151 0.111
<0.05 ‘ ' '

H 5% missing data 0.627 0.612 0.579

| 5% missing data, no monomorphic 0.628 0.613 0.579

J 5% missing data, no monomorphic, minor allele frequency 0628 0.613 0.579
>0.1 ‘ ' '

K 5% missing data, no monomorphic, minor allele frequency 0.256 0.245 0.202
<0.1 ' ' '

L 5% missing data, no monomorphic, minor allele frequency
20,05 0.626 0.611 0.579

o) i . .
M igaorglssmg data, no monomorphic, minor allele frequency 0224 0.212 0.170
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Table 5: Correlations between phenotypic and genopjc distances, phenotype data with
imputed values

Data set P2: Phenotype data with imputed missing

values
Gower Manhattan Modified Manhattan
Geonotypic distance: Manhattan

A Full data set 0.656 0.625 0.602
No missing data 0.656 0.624 0.598

C  No missing data, no monomorphic 0.656 0.624 0.598
No missing data, no monomorphic, minor allele frequency
0.1 0.647 0.619 0.593

E  No missing data, no monomorphic, minor allele frequency 0.255 0219 0213
<0.1 ‘ ' ’

F  No missing data, no monomorphic, minor allele frequency 0.656 0.625 0.599
>0.05 ' ' '

G No missing data, no monomorphic, minor allele frequency 0.158 0127 0.120
<0.05 ‘ ' ’

H 5% missing data 0.657 0.627 0.603

I 5% missing data, no monomorphic 0.658 0.627 0.603

J 5% missing data, no monomorphic, minor allele frequency 0.658 0.627 0.603
>0.1 ' ' ’

K 5% missing data, no monomorphic, minor allele frequency 0.275 0.244 0.242
<0.1 ' ' '

L 5% missing data, no monomorphic, minor allele frequency 0.655 0.625 0.601
>0.05 ' ' ’

M 5% missing data, no monomorphic, minor allele frequency 0.234 0.205 0.204
<0.05 ' ' '
Geonotypic distance: Euclidean

A Full data set 0.642 0.615 0.582
No missing data 0.644 0.615 0.581
No missing data, no monomorphic 0.644 0.615 0.581
No missing data, no monomorphic, minor allele frequency
0.1 0.637 0.612 0.578

E  No missing data, no monomorphic, minor allele frequency 0.242 0.209 0.201
<0.1 ' ' '

F  No missing data, no monomorphic, minor allele frequency 0.644 0.616 0.582
>0.05 ' ' '

G No missing data, no monomorphic, minor allele frequency 0.167 0.134 0125
<0.05 ' ' ’

H 5% missing data 0.644 0.616 0.583

I 5% missing data, no monomorphic 0.645 0.616 0.584

J 5% missing data, no monomorphic, minor allele frequency 0.645 0.616 0.584
>0.1 ' ' ’

K 5% missing data, no monomorphic, minor allele frequency 0.268 0.239 0.234
<0.1 ' ' '

L 5% missing data, no monomorphic, minor allele frequency 0.642 0.615 0.582
>0.05 ‘ ' ’

M 5% missing data, no monomorphic, minor allele frequency 0.234 0.206 0.203
<0.05 ' ' '
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Marker optimisation

The experiments run to investigate the effect ofk@anumbers on the correlation between
phenotypic distance and genotypic distance sudbasigood correlations could be obtained
by selecting markers at random. Two sampling sjrasewere adopted to test this. In the
first, markers were selected, at random, to reptesach ‘mapped position’ within the full

set of marker data. This strategy resulted in atikadly uniform distribution of markers

across the genome. The second strategy simply sdmpdrkers at random from the full set
of marker data. The second method could, withoutstraint, sample co-located markers

resulting in uneven sampling of markers acrosgtdrome.

The markers used in this study have been mappessathe barley genome to 944 map
positions over seven chromosomes and are not edestljbuted across these map positions
(Table 6)

Table 6: Distribution of markers across the sevendrley chromosomes

Chromosome Length in Number of map Map positions with a Maximum no markers at a map
cM postions single marker position
1 140.53 121 64 17
2 160.29 156 74 23
3 173.17 144 67 38
4 123.29 109 51 23
5 196.85 175 93 24
6 129.38 106 46 23
7 166.56 125 53 33

Markers were selected for each map position. Wheneap position was represented by a
single marker, that marker was always selected.ré&vaemap position was represented by
more than one marker, one marker was selecteégndbm, to represent that map position.
The selected markers were used to calculate destammirices and these distances were
correlated with the morphological distances. Thi®cpss was carried out for 2000

replications and a summary of the data obtainstiasvn in Table 7.

The optimum marker set was selected by interrogdtie data to identify markers at each
marker position that were frequently associatedh Wigh correlations. The upper quartile of
the correlations was collated and, for each maptipos the most frequently occurring
marker was selected. The resulting set of 944 markPata set O: Optimised evenly
distributed markers) were then used to calculatisthmce matrices which were, in turn,

correlated against morphological distances (Tahld e results for Data set O show a clear
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improvement over the randomly selected spaced meagd®l over the correlations tabulated
in Table 4 and Table 5.

Table 7: Summary of correlations between marker andnorphological distances obtained by
randomly sampling markers at every map position

Correlations using random spaced marker set (Data set N)

Marker Manhattan distance Marker Euclidean distance
Morphological Modified Modified
Distance Gower Manhattan Manhattan Gower Manhattan Manhattan
Minimum 0.602 0.566 0.537 0.588 0.555 0.518
Median 0.638 0.604 0.576 0.624 0.593 0.558
Mean 0.637 0.604 0.576 0.624 0.593 0.557
Maximum 0.665 0.630 0.603 0.652 0.620 0.586

Correlations using optimised spaced marker set (Data set O)
Data set P1: Raw

0.696 0.681 0.650 0.686 0.673 0.636
phenotype data

Data set P2:

Phenotype datawith 0.688 0.670 0.705 0.680 0.657

imputed missing
values

The second strategy simply required random samjalirrgarkers from within the full set of
marker data. At the first step of each replicatomandom number was generated which
would determine the number of markers drawn fromftlll set of marker data. In light of
the information gathered while determining the mmam number of markers (Figure 5) the
number of markers was constrained between 300 40@. Random markers sets were drawn
in 50,000 replications with the set yielding thetioum correlations between marker and
morphological distances recorded at each replicatioThe optimum correlations were
obtained for a marker set comprising 339 markers.

Table 8: Correlations using optimised random marker set

Marker Manhattan distance Marker Euclidean distance
Modified Modified
Gower Manhattan Manhattan Gower Manhattan Manhattan
Data set P1: Raw 0.675 0.659 0.634 0.670 0.656 0.626
phenotype data
Data set P2:
Phenotype datawith o 0.673 0.652 0.692 0.671 0.642

imputed missing
values

Using these approaches we have calculated comesabetween genotypic and phenotypic

distance that exceed any previously reported impaupof the hypothesis ‘Genotypic and

27



phenotypic distance measures for a set of varigtikdhave a strong positive correlation to
each other which in turn is fundamental to sucfidlgsimplementing UPOV Model 2. We

have also shown that increasing marker numbensligitmproves the correlation between
genotypic and phenotypic distances but the ratenpirovement in correlation decreases
toward zero. This second conclusion is importarda gside to future research policy by DUS
authorities; previously it has been hoped thataasing the number of markers would yield
even better correlations, however we have showrbéyond an empirically discovered point

more markers will not improve results.
Use of genomic prediction to calculate predicted nplmological distances

The 1991 Act of the UPOV Convention defines a \grees a group of plants that can be
‘defined by the expression of the characteristiesulting from a given genotype or
combination of genotypes’ and can be ‘distinguisfrech any other plant grouping by the
expression of at least one of the said charadt=isiVhile there is an ideal that underlies
UPOV BMT Model 1 that a characteristic will be #epression of genotypic variation at one
locus in the genome, genomic prediction assumesitpression of genotypes at all loci will,
to a greater or lesser extent, result in the espyasof a characteristic. Genomic prediction
requires a ‘training set’ of varieties where bo#ngtypic and phenotypic data are available.
Regression analysis within the training set all@uantification of the contribution of each
marker to the expression of a characteristic, whgrenotype is the sum of an effect

contributed by each genetic locus.

n
Phenotype; = Zmijgl-
j=1

Where Phenotypeis the predicted trait value for the ith line (atiy the ith genotype), ms
the marker score for the jth marker for the itte)ing is the regression coefficient for the jth

marker.

The results of this regression can be used to girétke expression of that characteristic in a
‘test set’ of varieties where genotypic data arailable but phenotypic data are not. The
coefficients of the quantitative contribution of cha genetic locus may be applied

subsequently to genetic variation at each locubentest set to predict the expression of the
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characteristic for each member of the test set.prbeess is repeated for each characteristic

that makes up the phenotypic data.

We predicted the phenotype of each characterisiimguidge regression implemented in the
‘penalized’ package®) within the R statistical package using linearresgion. Linear
regression was considered appropriate for the qaam traits. The values used for the
tuning parametex were determined by ten-fold cross-validation, edjmg the analysis using

a range of values for. On each of ten occasions the variety set waslelivinto a training set
(90%) and a test set (10%) of varieties. Phenotypse regressed against genotype in the
training set using each value forand calculated coefficients used to predict thenpkype
from the genotype data. The optimum value Xowas that value for which the residual
differences between the predicted and measurdgd/&daies were minimised (Figure 6). This
empirically determined tuning paramefefor each characteristic was used in the genomic

prediction of phenotype datasets that were, in, tused to calculate distance matrices.

The correlations between predicted and measuredaieastics were averaged over the ten

iterations for the optimum value df(

Table 9). The correlations ranged between r = 0ddd r = 0.975. The UPOV convention

states that characteristics must fulfil certaintecia to be selected for use in the DUS
examination. ‘Characteristics should be a resultaofjiven genotype or combination of

genotypes; ...." While we cannot assume that wee hselected markers close the loci
responsible for all of the characteristics in therpmology data set, the extent of linkage
disequilibrium (LD) in elite barley suggests thaamy characteristics should correlate with at
least some members of this dense set of markers.nfékes it all the more surprising that
we have not obtained better results for genomidiptien of individual characteristics and

may open questions regarding the heritability ef¢haracteristics used in DUS testing.

Genomic prediction was implemented using linearresgjon. We investigated whether

logistic regression offered improved correlationgtween predicted and measured
phenotypes for those ‘binary’ characteristics wittihe morphological datasets (2. Lowest
leaves: hairiness of leaf sheaths, 13. Ear: nurabeows, 22. Grain: rachilla hair type, 23.

Grain: husk, 26. Grain: hairiness of ventral furramd 27. Grain: disposition of lodicules).

The correlations were higher when ‘penalized’ Imesgression was implemented in all cases
(Table 10).
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Table 9: Empirically derived optimum values for A and the correlations between predicted and
measured characteristics for that value ok.

Average correlation

UPOV i Optimum . St. Deviation of
Characteristic (predicted vs measured .
No values for A . . correlation
characteristics)
1 Plant: growth habit 300 0.661 0.054
) Lowest leaves: hairiness of leaf 200 0.925 0.041
sheaths
3% Flag Iea'f: |nten5|t'y of anthocyanin 1000 0.459 0.153
coloration of auricles
5 Plant: frequency of plants with 200 0.250 0.112
recurved flag leaves
Flag leaf: glaucosity of sheath 200 0.227 0.074
Time of ear emergence 200 0.295 0.142
g Awns: |.nten5|ty of anthocyanin 200 0.445 0.202
coloration of tips
10 Ear: glaucosity 100 0.504 0.217
11 Ear: attitude 200 0.274 0.140
12 Plant: length 300 0.288 0.106
13 Ear: number of rows 50 0.954 0.023
14 Ear: shape 50 0.140 0.098
15 Ear: density 300 0.293 0.077
16 Ear: length 300 0.285 0.141
17 Awn: length 200 0.393 0.118
18 Rachis: length of first segment 1000 0.329 0.089
19 Rachis: curvature of first segment 200 0.343 0.188
20 Sterile spikelet: attitude 100 0.682 0.080
51 Med'lan splkelet:'length of'glume 1000 0.956 0.108
and its awn relative to grain
22 Grain: rachilla hair type 100 0.572 0.190
23 Grain: husk 1000 0.201 0.120
24 Grain: anthocyanin coloration of 50 0.698 0.055
nerves of lemma
Grain: spiculation of inner lateral
25 . 50 0.773 0.084
nerves of dorsal side of lemma
26 Grain: hairiness of ventral furrow 50 0.746 0.071
27 Grain: disposition of lodicules 1000 0.554 0.219
28 Kernel: colour of aleuron layer 50 0.764 0.065
29 Seasonal type 100 0.975 0.023
i Ea'r: development of sterile 100 0.738 0.094
spikelets
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Figure 6: Plots for residual values (predicted — masured characteristics) vs tuning parameter
(»). Optimum values for A were identified when residuals were minimised.

Table 10: Comparison of correlations between predted and measured phenotypes offered by
logistic or linear regression implemented within tle ‘penalized’ package.

UPOV No Characteristic Logistic regression (r) Linear regression (r)
2 Lowest leaves: hairiness of leaf sheaths 0.932 0.960
13 Ear: number of rows 0.946 0.971
22 Grain: rachilla hair type 0.699 0.833
23 Grain: husk 0.572 0.801
26 Grain: hairiness of ventral furrow 0.766 0.864
27 Grain: disposition of lodicules 0.518 0.800

Characteristic 14: Ear: shape, with three statgse(ing (1,0), parallel (1,0) or fusiform (1,0))
was analysed using both linear and logistic regrasand the characteristic re-composed
from the results of analysis. This analysis offenedmprovement in the correlations between

predicted and measured phenotypes.

Genomic prediction was implemented selecting thmitmg set and test sets in five different
ways. In the first four instances the ‘training’sels selected on a characteristic by
characteristic basis and the ‘test set’ includddvatieties. Firstly, the ‘training set’ was

selected to include all varieties with complete rpitgpe data (Dataset R). In the next three
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cases, the ‘training set’ was selected from ambegvarieties with complete phenotype data
to include approximately one half (216, Dataset dd)g quarter (108, Dataset T) and one
eighth (54, Dataset U) of the number of varietrethe complete data set. In the fifth instance
the ‘training set’ to include only those varieti@bere phenotype data was complete for all
characteristics (196 varieties) and the ‘testisetuded only those varieties where phenotype
data was incomplete for one or more characterigbegaset V). In all cases, Euclidean and
Manhattan distance matrices were calculated froenptfedicted phenotype data calculated
for each ‘test set’ and these matrices were, in,toorrelated against the three phenotypic
distance matrices (Table 11). The Dataset P2: dfpe@ data with imputed missing values

was used for all correlations.

The results for data sets R, S, T and U are a aigamovement over any shown in Table 4
and Table 5 and this suggests that improved coioek have been obtained by novel
statistical approaches. However, the ‘training set subset of the ‘test set’ for each of these
data sets rather than being completely independfetiiis method were implemented in the
future then the ‘training set’ and ‘test set’ woblel independent in the same way that they are
independent for Dataset V, where the calculatedetairons are no better than the best

among those shown in Table 4 and Table 5.

Table 11: Correlations between predicted and meased phenotypic distance matrices

Genomic Predicted Phenotype Measured Phenotype Correlations (r)

Data set R S T U Vv
Euclidean distance Gower distance 0.816 0.785 0.743 0.715 0.485
Euclidean distance Manhattan distance 0.819 0.772 0.724 0.675 0.504
Euclidean distance Modified Manhattan distance 0.819 0.772 0.724 0.675 0.500
Manhattan distance Gower distance 0.855 0.812 0.765 0.725 0.488
Manhattan distance Manhattan distance 0.842 0.789 0.735 0.683 0.512
Manhattan distance Modified Manhattan distance 0.842 0.789 0.735 0.683 0.506

Relationships within the variety set

The varieties selected for this study have diffgralegrees of relatedness. We abstracted
information from the technical questionnaires subedi with each candidate variety
identifying their parents. We integrated this imf@tion with pedigree data from the BBSRC

Barley Pedigree Reportvivw.jic.ac.uk/germplas/bbsrc_ce/Pedb.jxand information taken
from Abstammungskatalog der Gerstensorten

(www.lIfl.bayern.de/ipz/gerste/09740/gerstenstamm).piaditional information was taken
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from passport data held by germplasm collectionsluding the Genebank of IPK

Gatersleben htp://gbis.ipk-gatersleben.de/gbig i/ the U.S. Department of Agriculture's

Agricultural Research Service Germplasm ResounsfEsrhation Network fittp://www.ars-

arin.gov), and the ECPGR Barley Databaké(f://barley.ipk-gatersleben.de/ebdb/ The

pedigree data were tabulated and interrogated aelEXx

The varieties within the study showed some sumgislegrees of relatedness; for example,
the variety ‘Igri’ features in the pedigree of 2¢drieties, either as a parent, grandparent,
great grand parent or great — great grandparent.idéified all possible full, half and
guarter siblings, and those varieties related asnpa- offspring or grandparent — offspring
(Table 12 and Table 13); for example, 65 varietiese full siblings of at least one other
variety, organised into 28 families of between taval four siblings in 47 pairs. The pair wise
phenotypic and genotypic distance for all relatedrgp were extracted and tabulated by

relationship.

Table 12: Mean phenotypic distances among sets aflated varieties

Average distances Families Pairs Gower Manhattan Modified Manhattan
All varieties NA 92665 0.25 38.87 29.31
Full siblings 28 67 0.16 25.67 16.74
Half siblings 126 2676  0.19 31.58 22.24
Quarter siblings 179 11975 0.20 33.04 23.60
Parent - offspring pairs 115 365 0.18 28.41 19.29
Grandparent - offspring pairs 67 327 0.19 30.76 21.79

The phenotypic data ranked the related sets diffigravith Gower’s Distance placing the
sets in order of full siblings, parent — offsprif@lf siblings, grandparent — offspring then
guarter siblings while the Manhattan and ModifiedrWattan distances placed the sets in
order full siblings, parent — offspring, grandparenoffspring, half siblings then quarter
siblings. The genotypic distances rank the setthensame order as the Manhattan and
Modified Manhattan phenotypic distances. The digidn of the mean distances for the

related sets is illustrated in Figure 7, Figurené Rigure 9.

Table 13: Mean genotypic distances among sets ofated varieties

Average distances Families Pairs Manhattan Euclidean
All varieties NA 92665 1567.7 39.3
Full siblings 28 67 639.7 24.5
Half siblings 126 2676 1025.2 31.7
Quarter siblings 179 11975 1106.0 33.0
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Parent - offspring pairs 115 365 755.8 27.0
Grandparent - offspring pairs 67 327 10244 31.7

Comparison of phenotypic distances (Gower) among related varieties
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Figure 7: Distribution of Gower’s distances amonglte related sets

In Figure 7, and Figure 8 an overlap in the distiitn of distances can be seen between the
different related sets. In contrast, the distrilm$i of genetic distances appear to be more
distinct (Figure 9). This is encouraging as it segjg that genetic distances may offer greater
resolution so there may be solutions that will wlla reasonable calibration of genetic

distances against phenotypic distances.
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Comparison of Phenotypic distances (Modified Manhattan) among related varieties
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Figure 8: Distribution of Modified Manhattan distan ces among the related sets

Comparison of genotypic distances (Euclidean, Data set A) among related varieties
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Figure 9: Distribution of genetic distances amonghe related sets

When the means for each related set using phermodyyi genotypic data are plotted (Figure
10) they show a clear relationship (r = 0.977).sTit@sult confirms the potential for UPOV
Model 2 in the absences of ‘noisy’ data.
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Phenotypic vs genotypic distances among related varieties
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Figure 10: Mean phenotypic vs genotypic distancesnang the different classes of related
varieties

When the mean distances for each kinship groupcanelated to a simple coefficient of
relatedness (full siblings: 0.5, half siblings: ®.2yuarter siblings: 0.125, parent - offspring
pairs: 0.5, grandparent - offspring pairs: 0.2bg torrelations with morphological distanced
are r = -0.94 (Gower’s Distance), r = -0.94 (MamdratDistance) and r = -0.90 (Modified
Manhattan Distance). The correlations for genastadces fall into the range r = -0.96 to r =
-0.97.

Comparison of decision making using morphology cergotype data

Here we examine the hypothesis that ‘Varieties shasv'similar’ using phenotypic distances
will also be shown as ‘similar’ using genotypictdisces’. The ‘typical’ example data shown
in Figure 11 illustrates the issue that needs taoeselved. Despite the positive correlation
between phenotypic and genotypic distances, thellebe& ambiguity when comparing

decisions made using morphological and genotypia.da

As all varieties within this dataset are distirrcimh each other it is not possible to assess DUS
decisions at the conventional thresholds. An &aditve approach was taken where an
arbitrary threshold was set in order to declare %arieties (43 varieties) as non distinct

using the morphological data. This set of ‘non-Rrieties was used as a bench mark for

36



comparisongnade by setting thresholds for the genotypic datani attempt to reproduce t
decisions madesing the morphological da A series ofthreshold values were applied
the genetiadistance matrices that would generate a seriesi@’-D’ variety sets with 43
100, 200, 250, 3Q0350 and 4C members. The decision making using phenotypi
genotypic data could be compared by simply counthrey number of varieties that we

described as ‘nod’ by both method:

Correlation of genetic vs phenotypic distances

80
<

Distinct varieties

60

F1 Raw phenotype data
40
o

20

Euclidean genetic distance

Figure 11 'Typical' scatter of genetic vs phenotypic distanes illustrating ambiguity when
attempting to reproduce morphological distinctness decisions made usingenotype data

The ability to use geotype data to reproduce distinctness decisionsemashg morpholog
is shown when 43 ‘nob’ varieties are identified using Gov’'s Distance Table 14),
Manhattan Distance (TablEs) or Modified Manhattan Distancd d@ble 16) and compared
with sets of ‘nonD’ varieties identified using genetic distances.affi3 ‘noi-D’ varieties
are identified using genetic distan, fewer than hlf the varieties appear in both 1
genotypic ‘nonb’ set and the morphology ‘n-D’ set. This clearly shows that the sa
decision will not be madeising genetic distances or morphological diste. This is a
setback regarding implementation of UPOV B Model 2 molecular methods as a dir
replacement for the current system should the succriterion be that genotypic ar

morphological decisions correspond exacThe decisions made usiggnomic prediction ¢
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morphology (Datasets R, S and T) correspond moseb} with those made using measured

morphology but these results remain unsatisfactory.

Table 14: Comparison of distinctness decisions: Ga¥'s Distance vs genotypic distances

Number of genotypic ‘non-D’ varieties
43 100 200 250 300 350 400
Morphological distance :Gower. 43 ‘non-D’ varieties
Genetic distance

A Full data set Euclidean 11 24 39 43 43 43 43
Manhattan 11 24 39 43 43 43 43

C No missing data, no mono-morphic loci Euclidean 1225 41 42 43 43 43
’ Manhattan 12 29 41 42 43 43 43

b No missing data, no mono-morphic loci, Euclidean 12 25 36 40 43 43 43
minor allele frequency >0.1 Manhattan 12 25 36 40 43 43 43

£ No missing data, no mono-morphic loci, Euclidean 6 11 32 37 40 41 43
minor allele frequency <0.1 Manhattan 6 11 32 37 40 41 43

I 5% missing data, no mono-morphic loci Euclidean 1325 40 43 43 43 43
Manhattan 13 25 40 43 43 43 43

] 5% missing data, no mono-morphic loci, Euclidean 13 25 40 43 43 43 43
minor allele frequency >0.1 Manhattan 13 25 40 43 43 43 43

K 5% missing data, no mono-morphic loci, Euclidean 14 23 33 38 40 41 42
minor allele frequency <0.1 Manhattan 14 23 33 38 40 41 42

. N Euclidean 14 26 41 42 43 43 43

O Optimised evenly distributed markers Manhattan 14 26 41 42 43 43 43
R Training set: Euclidean 13 24 41 42 43 43 43
all varieties with complete data Manhattan 20 35 41 43 43 43 43

S Training set: Euclidean 11 27 41 42 43 43 43
216 varieties with complete data Manhattan 18 32 41 43 43 43 43
Training set: Euclidean 9 24 40 42 42 43 43
108 varieties with complete data Manhattan 14 29 41 42 42 43 43

Table 15: Comparison of distinctness decisions: Mdrattan Distance vs genotypic distances

Number of genotypic ‘non-D’ varieties
43 100 200 250 300 350 400
Morphological distance: Manhattan. 43 ‘non-D’ varieties
Genetic distance

A Full data set Euclidean 10 19 34 39 41 42 42
Manhattan 10 19 34 39 41 42 42

C No missing data, no mono-morphic loci Euclidean 9 20 3 40 a1 41 42
Manhattan 9 20 35 40 41 41 42

D No missing data, no mono-morphicloci, Euclidean 9 15 31 37 40 40 43
minor allele frequency >0.1 Manhattan 9 15 31 37 40 40 43

£ No missing data, no mono-morphic loci, Euclidean 4 8 26 30 35 39 41
minor allele frequency <0.1 Manhattan 4 8 26 30 35 39 41

I 5% missing data, no mono-morphic loci Euclidean 1019 3 41 a1 41 42
Manhattan 10 19 35 41 41 41 42

J 5% missing data, no mono-morphicloci,  Euclidean 10 18 35 41 41 41 42
minor allele frequency >0.1 Manhattan 10 18 35 41 41 41 42

K 5% missing data, no mono-morphicloci,  Euclidean 10 18 29 33 37 41 41
minor allele frequency <0.1 Manhattan 10 18 29 33 37 41 41

- I Euclidean 11 20 37 39 41 41 43

O Optimised evenly distributed markers Manhattan 11 20 37 39 a1 a1 43
Training set: Euclidean 15 24 37 39 40 43 43

all varieties with complete data Manhattan 15 31 37 40 40 43 43
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Training set: Euclidean 10 25 37 38 40 43 43

> 216 varieties with complete data Manhattan 13 27 37 40 41 43 43
T Training set: Euclidean 9 21 36 39 39 42 43
108 varieties with complete data Manhattan 11 26 36 39 39 43 43

Table 16: Comparison of distinctness decisions: Mdiied Manhattan Distance vs genotypic
distances

Number of genotypic ‘non-D’ varieties
43 100 200 250 300 350 400
Morphological distance: Modified Manhattan. 43 ‘non-D’ varieties
Genetic distance

A Full data set Euclidean 10 20 33 40 40 42 43
Manhattan 10 20 33 40 40 42 43

C No missing data, no mono-morphic loci Euclidean 8 19 3439 40 4l 42
! Manhattan 8 19 34 39 40 41 42

b No missing data, no mono-morphic loci, Euclidean 9 17 32 36 39 40 41
minor allele frequency >0.1 Manhattan 9 17 32 36 39 40 41

£ No missing data, no mono-morphic loci, Euclidean 3 6 23 31 36 39 42
minor allele frequency <0.1 Manhattan 3 6 23 31 36 39 42

I 5% missing data, no mono-morphic loci Euclidean 1019 34 40 40 4l 43
! Manhattan 10 19 34 40 40 41 43

I 5% missing data, no mono-morphic loci, Euclidean 10 19 34 40 40 41 43
minor allele frequency >0.1 Manhattan 10 19 34 40 40 41 43

K 5% missing data, no mono-morphic loci, Euclidean 7 17 28 33 38 41 42
minor allele frequency <0.1 Manhattan 7 17 28 33 38 41 42

. N Euclidean 10 20 37 40 41 41 42

O Optimised evenly distributed markers Manhattan 10 20 37 40 41 41 42
R Training set: Euclidean 18 28 37 39 42 43 43
all varieties with complete data Manhattan 21 34 37 41 43 43 43

S Training set: Euclidean 13 29 37 40 42 43 43
216 varieties with complete data Manhattan 17 32 37 41 43 43 43

T Training set: Euclidean 11 25 36 39 40 42 43
108 varieties with complete data Manhattan 12 29 36 40 40 43 43

The possibility of adopting an approach using \tate identified by genotype as ‘very
different’ was investigated by identifying furthéarger sets of varieties using the genotypic
data. Here we sought to determine what proportiothe variety set had to be identified as
‘similar but distinct’ using the genotype data brefawe could be confident that that we would
not include varieties that are ‘D’ by morphology @rg the genotypic ‘very different’
varieties. Among the genotypic dataset testeds ipassible to select 400 (out of 431)
varieties as ‘similar but distinct’ and still inclea one variety that is ‘non-D’ by morphology
among the ‘very different’ indentified by genotypilistances. Figure 12 show how the
distribution of varieties that are ‘non-D’ by mogdbgy and indentified as ‘non-D’ or
‘similar but distinct’ by the genotypic data appcbas the total that are ‘non-D’ by
morphology as the number of varieties selectedgusie genotypic data increases. It is
notable that complete convergence with the totat #ire ‘non-D’ by morphology is not

achieved even when 93% of the variety set are teelec
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Figure 12: Distribution of varieties that are ‘non-D’ by morphology and indentified as ‘non-D’
or ‘low-D’ by the genotypic data

CONCLUSIONS

We have explored the interactions between morpledbgnd genetic distances in a set of
431 elite UK barley varieties. We have used a $dtigh density SNP genotype data that
broadly represents the whole barley genome. B2 loci, the marker set is an order of
magnitude larger than any data set used in an &tjgo of UPOV BMT Model 2 previously

reported. We used these data to test the hypotheses

» Genotypic and phenotypic distance measures fot afsarieties will have a
strong positive correlation to each other.

* Varieties shown as ‘similar’ using phenotypic dmtes will also be shown as
‘similar’ using genotypic distances

In all cases we demonstrated a positive correlabetween genotypic and phenotypic
distance measures for this set of varieties. Wherse@lected genotype data on the basis of
simple criteria such as % missing data, the optinmemelations with phenotypic distance
measures were r = 0.64 (Gower’s Distance), r = @\Md@nhattan Distance) and r = 0.60
(Modified Manhattan Distance). We achieved betterralations by selecting the ‘best
marker’ at each mapped position across the genomed(72 (Gower’s Distance), r = 0.69
(Manhattan Distance) and r = 0.67 (Modified MandmattDistance)). However, we
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demonstrated, by repeated sampling, that thereaveadling to the correlations achievable by
simple calculation of genetic distance measureb that the addition of additional markers is
unlikely to offer a prospect of correlations abave 0.70. This analysis would have to be
tested for each crop species considered and thegcisi likely to vary according to the extent

of linkage disequilibrium within each crop genome.

Genomic prediction was attempted in order to ingast the possibility of breaking through

this ceiling. The results reported, at first sighffer considerable encouragement, achieving
correlations of r = 0.86 (Gower’s Distance), r 84 .(Manhattan Distance) and r = 0.84

(Modified Manhattan Distance). This apparent susceast be tempered by the lower results
calculated when the ‘training set’ and ‘test se¢ravtruly independent. It is also notable that,
when considered on a characteristic by charadtehasis there was considerable variation in
the correlations between predicted and measuredaceaistics. This suggests there is

considerable variation in the predictability of tlkbaracteristics and hence considerable
variability on the quality of information when theharacteristics are used in distinctness
testing under the current system. Genomic prediaiging methods such as ridge regression
are relatively new and there are few publishedvwso# packages available. There is
considerable active research in this area with xge&ation that novel methods are being

developed and implemented in new software (Hestlalt, 2012).

When varieties were grouped according to their gregi relationships, the strong correlation
observed between a coefficient of relatedness asktygr or morphological distances,
offering support for both or either type of datasastable for use in resolution of issues

regarding Essentially Derived Varieties (EDV).

The essence of UPOV BMT Model 2 requires calibratid genetic distance measures to
reproduce the decisions made using morphologictanices. We have demonstrated that a
one to one correspondence of distinctness decigamst possible, even at the high levels of
correlation between genetic and morphological dista achieved in this study. This result
raises a question. What level of correspondencedsst distinctness decisions made using
genetic and morphological distances would be regudefore UPOV BMT Model 2 could be
implemented? This cannot be answered by simply esddrg technical issues but is a
guestion that can only be addressed by the plagders and DUS testing authorities. Any
result other than a one to one correspondence a$idas results in risk to plant breeders
where the quality of existing protection by Plame&ders Rights is diminished if a novel
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genetic threshold is set at too low a level or‘thgtinctness’ needed to acquire protection of

a new variety is unreasonable diminished if a ngegletic threshold is set at too high a level.

We cannot advocate the immediate adoption of an \WBO®IT Model 2 approach on the
basis of the results reported here. Nevertheleedave shown greater correlations between
morphological and marker based estimates of distamtl a greater concordance between
decisions made on the basis of trait and markerescihan have been reported previously.
We feel, therefore, that these results are promiaimd that the approaches put forward here
merit development. The current study was only gmedbecause of the availability of trait
and markers data collated as part of the AGOUEBysturhe dataset has been adequate to
demonstrate the promise of approaches based ondagkity SNP marker sets, but for

several reasons it is not ideal for the followiegsons:
» Based predominantly on UK varieties only
* Only varieties which had been National Listed wiacduded.
* Number of varieties tested was relatively small
* Limited number of methods for phenotype predictested
» The marker panel used contains gaps.
Predominantly UK varieties

Genetic diversity at both the marker and trait lagaeduced. Aside from any direct effect
this may have on estimating the merit of alterreatmethods, one advantage of methods
based on cheap high density SNP platforms is tiferamty and consistency of scoring over
countries, compared with measurement of traits ateér marker systems such as SSRs
where there is often considerable variation fromttalab. The merit of the SNP platform is

therefore underestimated.
Only varieties which had been national listed weneluded

To judge UPOV BMT Models 1, 2, and 3, correlatiangegression coefficients between the
existing system and the system under test are a@ahpaliowever, only a selected sample of
varieties is included: national listed varietiesiethhave already been found to be distinct
inter se. This selection biases the estimates of correlatiod regression downwards. It is
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important to reduce this source of bias. Extendiggrange of varieties sampled will do this
to some extent, but including varieties which h#aiéed National Listing on distinctness
would be of greatest benefit. Breeder cooperationolaboration may be required for this.
(Breeders may be able to supply varieties were tieeer submitted because they knew they

would fail.)
Small number of varieties

The AGOUEB sample of varieties was 500. Comparaddst studies this is large. However
it is still underpowered. Cockraet al (2010) failed to detect loci for 14 characteristin
their study of DUS phenotypes, and this was atteithun part to low power. An increased
population size will increase power directly, ah@stcan be simple to achieve by expanding
the AGOUEB study to include varieties from acrossdpe. An additional benefit is that if a
repetition of the Cockram study on a larger scalgassible, it should result in greater
success, and may make an UPOV BMT Model 1 approaxie likely.

Limited number of methods for phenotype predictitasted

For genome-wide prediction methods, we have foclsseridge regression, since this is a
simple and easy to implement. More complex Bayesiathods are available and are more
usual in animal breeding, and methods of penaliegcession other than ridge should also be
tested. Increasingly, software implementing thesthods is becoming available. Moreover,
where several methods exist among which it is Hardliscriminate, methods of Model
Averaging may give greater improvements. Relatethi®) it is possible that approaches can
be developed in which marker information is incagted into the existing system rather than
being used as an alternative, and this may give tts improved efficiencies while
maintaining all the benefits of the current trastsbd system. An alternative approach in
which morphologicatlistances between varieties are predicted directly from mexkeather
than indirectly from marker based predictions o&reltteristics may also offer considerable
advantages. For example it may offer a simple mexdnselecting or weighting markers
towards those which discriminate among varietiehh@é1same manner as the morphological

Scores.
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Gaps in the marker panel

The 3072 markers genotyped on the AGOUEB panel baea superseded by larger panels
of markers. While the present study used re-samphrethods to demonstrate that the
markers could be thinned with little loss, there gaps in the panel (maximum 8.05 cM)
which could be detrimental but which cannot be sss@ with the existing data. Including
markers within these gaps may increase the accufatye systems tested. Since we propose
to genotype more lines, we should take the oppiyttio achieve a more uniform coverage.
This could be achieved by genotyping with the higtensity SNP platforms which are now

available, or by creating our own panel of marlsgscifically for DUS purposes.
PROPOSAL FOR FUTURE WORK

We have demonstrated that good correlations betywlenotypic and genotypic distances
can be achieved on this regional set of variebasthat Model 2 now needs to be developed
on a larger scale in a European collaborative pto&e propose that the current project be
expanded to sample as large a range of Europedeybaarieties as possible, to include
varieties which have failed DUS (on D) in additimnvarieties which have been successfully
listed. This may require the co-operation of bregede supply varieties which have not been
National Listed. A European-wide dataset of DUSrabteristics data will need to be created
and collated. There may also be a need for additicharacteristic scoring to resolve
inconsistencies and to incorporate any varietieduded specifically for this study. All
varieties will be genotyped with a markers set tipdased on those used in the current
study, but expanded to fill gaps. A greater ranfyeharacteristic prediction methods will be
explored and methods to combine markers with cheratic scores will also be considered.
This project has laid the foundation for a largesearch project by demonstrating that better
correlations than previously reported can be obthinom good quality molecular data.
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