PROTOCOL FOR TESTS ON DISTINCTNESS, UNIFORMITY AND STABILITY

Solanum lycopersicum L. *x Solanum habrochaites* S. Knapp & D.M. Spooner;
Solanum lycopersicum L. *x Solanum peruvianum* (L.) Mill.;
Solanum lycopersicum L. *x Solanum cheesmaniae* (L. Ridley) Fosberg

TOMATO ROOTSTOCKS

UPOV Code: SOLAN_LHA; SOLAN_LPE; SOLAN_LCH

Adopted on 19/04/2016

Entry into force on 19/04/2016
TABLE OF CONTENTS

CPVO-TP/294/1 Rev

1. SUBJECT OF THE PROTOCOL AND REPORTING
 - 1.1 Scope of the technical protocol
 - 1.2 Entry Into Force
 - 1.3 Reporting between Examination Office and CPVO and Liaison with Applicant

2. MATERIAL REQUIRED
 - 2.1 Plant material requirements
 - 2.2 Informing the applicant of plant material requirements
 - 2.3 Informing about problems on the submission of material

3. METHOD OF EXAMINATION
 - 3.1 Number of growing cycles
 - 3.2 Testing Place
 - 3.3 Conditions for Conducting the Examination
 - 3.4 Test design
 - 3.5 Additional tests
 - 3.6 Constitution and maintenance of a variety collection

4. ASSESSMENT OF DISTINCTNESS, UNIFORMITY AND STABILITY
 - 4.1 Distinctness
 - 4.2 Uniformity
 - 4.3 Stability

5. GROUPING OF VARIETIES AND ORGANIZATION OF THE GROWING TRIAL

6. INTRODUCTION TO THE TABLE OF CHARACTERISTICS
 - 6.1 Characteristics to be used
 - 6.2 Example Varieties
 - 6.3 Legend

7. TABLE OF CHARACTERISTICS

8. EXPLANATIONS ON THE TABLE OF CHARACTERISTICS
 - 8.1 Explanations covering several characteristics
 - 8.2 Explanations for individual characteristics

9. LITERATURE

10. TECHNICAL QUESTIONNAIRE
1. SUBJECT OF THE PROTOCOL AND REPORTING

1.1 Scope of the technical protocol

This Technical Protocol applies to all varieties of *Solanum lycopersicum* L. × *Solanum habrochaites* S. Knapp & D.M. Spooner, *Solanum lycopersicum* L. × *Solanum peruvianum* L. (Mill.) and *Solanum lycopersicum* L. × *Solanum cheesmaniae* (L. Ridley) Fosberg. Such varieties are generally used as rootstocks for tomato varieties (varieties of *Solanum lycopersicum* L. (*Lycopersicum esculentum* Mill.)).

Rootstocks belonging to *Solanum lycopersicum* L. (*Lycopersicum esculentum* Mill.) or to *Solanum lycopersicum* L. × *Solanum pimpinellifolium* L. (*Lycopersicum esculentum* Mill. × *Lycopersicum pimpinellifolium* Mill.) should be covered by the most recent version of the CPVO protocol for tomato TP/44.

The protocol describes the technical procedures to be followed in order to meet the requirements of Council Regulation 2100/94 on Community Plant Variety Rights. The technical procedures have been agreed by the Administrative Council and are based on documents agreed by the International Union for the Protection of New Varieties of Plants (UPOV), such as the General Introduction to DUS (UPOV Document TG/1/3 http://www.upov.int/en/publications/intro_dus.htm), its associated TGP documents (http://www.upov.int/en/publications/tgp/) and the relevant UPOV Test Guideline TG/294/1 dated 20/03/2013 (http://www.upov.int/edocs/tgdocs/en/tg294.pdf) for the conduct of tests for Distinctness, Uniformity and Stability.

1.2 Entry into Force

The present protocol enters into force on 19.04.2016. Any ongoing DUS examination of candidate varieties started before the aforesaid date will not be affected by the approval of the Technical Protocol. Technical examinations of candidate varieties are carried out according to the TP in force when the DUS test starts. The starting date of a DUS examination is considered to be the due date for submitting of plant material for the first test period.

In cases where the Office requests to take-over a DUS report for which the technical examination has either been finalized or which is in the process to be carried out at the moment of this request, such report can only be accepted if the technical examination has been carried out according to the CPVO TP which was in force at the moment when the technical examination started.

1.3 Reporting between Examination Office and CPVO and Liaison with Applicant

1.3.1 Reporting between Examination Office and CPVO

The Examination Office shall deliver to the CPVO a preliminary report (“the preliminary report”) no later than two weeks after the date of the request for technical examination by the CPVO.

The Examination Office shall also deliver to the CPVO a report relating to each growing period (“the interim report”) and, when the Examination Office considers the results of the technical examination to be adequate to evaluate the variety or the CPVO so requests, a report relating to the examination (“the final report”).

The final report shall state the opinion of the Examination Office on the distinctness, uniformity and stability of the variety. Where it considers those criteria to be satisfied, or where the CPVO so requests, a description of the variety shall be added to the report. If a report is negative the Examination Office shall set out the detailed reasons for its findings.

The interim and the final reports shall be delivered to the CPVO as soon as possible and no later than on the deadlines as laid down in the designation agreement.

1.3.2 Informing on problems in the DUS test

If problems arise during the course of the test the CPVO should be informed immediately so that the information can be passed on to the applicant. Subject to prior permanent agreement, the applicant may be directly informed at the same time as the CPVO particularly if a visit to the trial is advisable.

1.3.3 Sample keeping in case of problems

If the technical examination has resulted in a negative report, the CPVO shall inform the Examination Office as soon as possible in case that a representative sample of any relevant testing material shall be kept.
2. MATERIAL REQUIRED

2.1 Plant material requirements

Information with respect to the agreed closing dates and submission requirements of plant material for the technical examination of varieties can be found on http://www.cpvo.europa.eu/main/en/home/documents-and-publications/s2-gazette in the special issue S2 of the Official Gazette of the Office. General requirements on submission of samples are also to be found following the same link.

2.2 Informing the applicant of plant material requirements

The CPVO informs the applicant that

- he is responsible for ensuring compliance with any customs and plant health requirements.
- the plant material supplied should be visibly healthy, not lacking in vigor, nor affected by any important pest or disease.
- the plant material should not have undergone any treatment which would affect the expression of the characteristics of the variety, unless the competent authorities allow or request such treatment. If it has been treated, full details of the treatment must be given.

2.3 Informing about problems on the submission of material

The Examination Office shall report to the CPVO immediately in cases where the test material of the candidate variety has not arrived in time or in cases where the material submitted does not fulfil the conditions laid down in the request for material issued by the CPVO.

In cases where the examination office encounters difficulties to obtain plant material of reference varieties the CPVO should be informed.

3. METHOD OF EXAMINATION

3.1 Number of growing cycles

Two independent growing cycles

The minimum duration of tests should normally be two independent growing cycles.

The two independent growing cycles should be in the form of two separate plantings.

3.2 Testing Place

3.3 Conditions for Conducting the Examination

The tests should be carried out under conditions ensuring satisfactory growth for the expression of the relevant characteristics of the variety and for the conduct of the examination.

3.4 Test design

3.4.1 Each test should be designed to result in a total of at least 20 plants, which should be divided between at least two replicates.

3.4.2 The design of the tests should be such that plants or parts of plants may be removed for measurement or counting without prejudice to the observations which must be made up to the end of the growing cycle.

3.5 Additional tests

In accordance with Article 83(3) of Council Regulation No. 2100/94 an applicant may claim either in the Technical Questionnaire or during the test that a candidate has a characteristic which would be helpful in establishing distinctness. If such a claim is made and is supported by reliable technical data, an additional test may be undertaken providing that a technically acceptable test procedure can be devised.

Additional tests will be undertaken, with the agreement of the President of CPVO, where distinctness is unlikely to be shown using the characters listed in the protocol.
3.6 Constitution and maintenance of a variety collection

The process for the constitution and the maintenance of a variety collection can be summarized as follows:

Step 1: Making an inventory of the varieties of common knowledge

Step 2: Establishing a collection (“variety collection”) of varieties of common knowledge which are relevant for the examination of distinctness of candidate varieties

Step 3: Selecting the varieties from the variety collection which need to be included in the growing trial or other tests for the examination of distinctness of a particular candidate variety.

3.6.1 Forms of variety collection

(a) Fruit species and seed propagated agricultural and vegetable species

The variety collection shall comprise variety descriptions and living plant material, thus a living reference collection. The variety description shall be produced by the examination office unless special cooperation exists between examination offices and the CPVO. The descriptive and pictorial information produced by the examination office shall be held and maintained in a form of a database.

(b) Vegetatively propagated agricultural and vegetable species

The variety collection shall comprise variety descriptions; no living reference collection is required. The variety description shall be produced by the examination office unless special cooperation exists between examination offices and the CPVO. The descriptive and pictorial information produced by the examination office shall be held and maintained in a form of a database.

3.6.2 Living Plant Material

(a) Fruit species and seed propagated agricultural and vegetable species

The examination office shall collect and maintain living plant material of varieties of the species concerned in the variety collection.

(b) Vegetatively propagated agricultural and vegetable species and ornamental species

The examination office shall obtain living plant material of reference varieties as and when those varieties need to be included in growing trials or other tests.

3.6.3 Range of the variety collection

The living variety collection shall cover at least those varieties that are suitable to climatic conditions of a respective examination office.

3.6.4 Making an inventory of varieties of common knowledge for inclusion in the variety collection

The inventory shall take into account the list of protected varieties and the official, or other, registers of varieties, in particular:

The inventory shall include varieties protected under National PBR (UPOV contracting parties) and Community PBR, varieties registered in the Common Catalogue, the OECD list, the Conservation variety list and varieties in trade or in commercial registers for those species not covered by a National or the Common Catalogue.

3.6.5 Maintenance and renewal/update of a living variety collection

(a) Seed propagated species

The examination office shall maintain seeds in conditions which will ensure germination and viability, periodical checks, and renewal as required. For the renewal of existing living material the identity of replacement living plant material shall be verified by conducting side-by-side plot comparisons between the material in the collection and the new material.

(b) Vegetatively propagated species

The examination office shall maintain the variety collection under appropriate growing conditions (e.g. glasshouse, orchard, in vitro), where it shall be ensured that the plants are adequately irrigated, fertilised, pruned and protected from harmful pests and diseases. For the renewal of existing living material the identity of replacement living plant material shall be verified by conducting side-by-side plot comparisons between the material in the collection and the new material or by checking the identity of the new material against the variety description.
4. ASSESSMENT OF DISTINCTNESS, UNIFORMITY AND STABILITY

The prescribed procedure is to assess distinctness, uniformity and stability in a growing trial.

4.1 Distinctness

4.1.1 General recommendations

It is of particular importance for users of this Technical Protocol to consult the UPOV-General Introduction to DUS (link in chapter 1 of this document) and TGP 9 ‘Examining Distinctness’ (http://www.upov.int/export/sites/upov/en/publications/tgp/documents/tgp_9_1.pdf) prior to making decisions regarding distinctness. However, the following points are provided for elaboration or emphasis in this Technical Protocol.

Further guidance is provided in documents TGP/9 ”Examining Distinctness” and TGP/8 "Trial Design and Techniques Used in the Examination of Distinctness, Uniformity and Stability".

4.1.2 Consistent differences

The differences observed between varieties may be so clear that more than one growing cycle is not necessary. In addition, in some circumstances, the influence of the environment is not such that more than a single growing cycle is required to provide assurance that the differences observed between varieties are sufficiently consistent. One means of ensuring that a difference in a characteristic, observed in a growing trial, is sufficiently consistent is to examine the characteristic in at least two independent growing cycles.

4.1.3 Clear differences

Determining whether a difference between two varieties is clear depends on many factors, and should consider, in particular, the type of expression of the characteristic being examined, i.e. whether it is expressed in a qualitative, quantitative, or pseudo-qualitative manner. Therefore, it is important that users of these Technical Protocols are familiar with the recommendations contained in the UPOV-General Introduction to DUS prior to making decisions regarding distinctness.

4.1.4 Number of plants/parts of plants to be examined

Unless otherwise indicated, for the purposes of distinctness, all observations on single plants should be made on 10 plants or parts taken from each of 10 plants and any other observations made on all plants in the test, disregarding any off-type plants.

When resistance characteristics are used for assessing distinctness, uniformity and stability, records must be taken under conditions of controlled infection and, unless otherwise indicated, on at least 20 plants.

4.1.5 Method of observation

The recommended method of observing the characteristic for the purposes of distinctness is indicated by the following key in the third column of the Table of Characteristics (see document TGP/9 "Examining Distinctness", Section 4 “Observation of characteristics”):

- MG: single measurement of a group of plants or parts of plants
- MS: measurement of a number of individual plants or parts of plants
- VG: visual assessment by a single observation of a group of plants or parts of plants
- VS: visual assessment by observation of individual plants or parts of plants

Type of observation: visual (V) or measurement (M)

"Visual" observation (V) is an observation made on the basis of the expert’s judgment. For the purposes of this document, "visual" observation refers to the sensory observations of the experts and, therefore, also includes smell, taste and touch. Visual observation includes observations where the expert uses reference points (e.g. diagrams, example varieties, side-by-side comparison) or non-linear charts (e.g. colour charts). Measurement (M) is an objective observation against a calibrated, linear scale e.g. using a ruler, weighing scales, colorimeter, dates, counts, etc.

Type of record: for a group of plants (G) or for single, individual plants (S)

For the purposes of distinctness, observations may be recorded as a single record for a group of plants or parts of plants (G), or may be recorded as records for a number of single, individual plants or parts of plants (S). In most cases, "G" provides a single record per variety and it is not possible or necessary to apply statistical methods in a plant-by-plant analysis for the assessment of distinctness.

In cases where more than one method of observing the characteristic is indicated in the Table of Characteristics (e.g. VG/MG), guidance on selecting an appropriate method is provided in document TGP/9, Section 4.2.
4.2 **Uniformity**

It is of particular importance for users of this Technical Protocol to consult the UPOV-General Introduction to DUS (link in chapter 1 of this document) and TGP 10 ‘Examining Uniformity’ (http://www.upov.int/export/sites/upov/en/publications/tgp/documents/tgp_10_1.pdf) prior to making decisions regarding uniformity. However, the following points are provided for elaboration or emphasis in this Technical Protocol.

For the assessment of uniformity, a population standard of 1% and an acceptance probability of at least 95% should be applied. In the case of a sample size of 20 plants, 1 off-type is allowed.

4.3 **Stability**

4.3.1 It is of particular importance for users of this Technical Protocol to consult the UPOV-General Introduction to DUS (link in chapter 1 of this document) and TGP 11 ‘Examining Stability’ (http://www.upov.int/export/sites/upov/en/publications/tgp/documents/tgp_11_1.pdf)

In practice, it is not usual to perform tests of stability that produce results as certain as those of the testing of distinctness and uniformity. However, experience has demonstrated that, for many types of variety, when a variety has been shown to be uniform, it can also be considered to be stable.

4.3.2 Where appropriate, or in cases of doubt, stability may be further examined by testing a new seed or plant stock to ensure that it exhibits the same characteristics as those shown by the initial material supplied.

5. **GROUPING OF VARIETIES AND ORGANIZATION OF THE GROWING TRIAL**

5.1 The selection of varieties of common knowledge to be grown in the trial with the candidate varieties and the way in which these varieties are divided into groups to facilitate the assessment of distinctness are aided by the use of grouping characteristics.

5.2 Grouping characteristics are those in which the documented states of expression, even where produced at different locations, can be used, either individually or in combination with other such characteristics: (a) to select varieties of common knowledge that can be excluded from the growing trial used for examination of distinctness; and (b) to organize the growing trial so that similar varieties are grouped together.

5.3 The following have been agreed as useful grouping characteristics.

 a) Fruit: green shoulder (characteristic 11)
 b) Fruit: shape in longitudinal section (characteristic 17)
 c) Fruit: colour at maturity (characteristic 19)
 d) Autonecrosis (characteristic 21)
 e) Resistance to *Meloidogyne incognita* (characteristic 22)
 f) Resistance to *Verticillium* sp. (Va and Vd) – Race 0 (characteristic 23)
 g) Resistance to *Fusarium oxysporum* f. sp. *lycopersici* – Race 0 (ex 1) (characteristic 24.1)
 h) Resistance to *Fusarium oxysporum* f. sp. *lycopersici* – Race 1 (ex 2) (characteristic 24.2)
 i) Resistance to *Fusarium oxysporum* f. sp. *lycopersici* – Race 2 (ex 3) (characteristic 24.3)

5.4 If other characteristics than those from the TP are used for the selection of varieties to be included into the growing trial, the examination office shall inform the CPVO and seek the prior consent of the CPVO before using these characteristics.
6. INTRODUCTION TO THE TABLE OF CHARACTERISTICS

6.1 Characteristics to be used

The characteristics to be used in DUS tests and preparation of descriptions shall be those referred to in the table of characteristics. All the characteristics shall be used, providing that observation of a characteristic is not rendered impossible by the expression of any other characteristic, or the expression of a characteristic is prevented by the environmental conditions under which the test is conducted or by specific legislation on plant health. In the latter case, the CPVO should be informed.

The Administrative Council empowers the President, in accordance with Article 23 of Commission Regulation No 874/2009, to insert additional characteristics and their expressions in respect of a variety.

Technical Protocols with asterisked characteristics (only for certain vegetable species)

In the case of disease resistance characteristics, only those resistances marked with an asterisk (*) in the CPVO column are compulsory.

States of expression and corresponding notes

In the case of qualitative and pseudo-qualitative characteristics, all relevant states of expression are presented in the characteristic. However, in the case of quantitative characteristics with 5 or more states, an abbreviated scale may be used to minimize the size of the Table of Characteristics. For example, in the case of a quantitative characteristic with 9 states, the presentation of states of expression in the Test Guidelines may be abbreviated as follows:

<table>
<thead>
<tr>
<th>State</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>small</td>
<td>3</td>
</tr>
<tr>
<td>medium</td>
<td>5</td>
</tr>
<tr>
<td>large</td>
<td>7</td>
</tr>
</tbody>
</table>

However, it should be noted that all of the following 9 states of expression exist to describe varieties and should be used as appropriate:

<table>
<thead>
<tr>
<th>State</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>very small</td>
<td>1</td>
</tr>
<tr>
<td>very small to small</td>
<td>2</td>
</tr>
<tr>
<td>small</td>
<td>3</td>
</tr>
<tr>
<td>small to medium</td>
<td>4</td>
</tr>
<tr>
<td>medium</td>
<td>5</td>
</tr>
<tr>
<td>medium to large</td>
<td>6</td>
</tr>
<tr>
<td>large</td>
<td>7</td>
</tr>
<tr>
<td>large to very large</td>
<td>8</td>
</tr>
<tr>
<td>very large</td>
<td>9</td>
</tr>
</tbody>
</table>

6.2 Example Varieties

Where appropriate, example varieties are provided to clarify the states of expression of each characteristic.

6.3 Legend

For the CPVO No column:

G Grouping characteristic – see Chapter 5
(*) Asterisked characteristic – see Chapter 6.1.2
MG, MS, VG, VS – see Chapter 8.1 (+) See Explanations on the Table of Characteristics in Chapter 8.

For the UPOV No column:

The numbering of the characteristics is provided as a reference to the ad hoc UPOV guideline.

(*) UPOV Asterisked characteristic – Characteristics that are important for the international harmonization of variety descriptions.
TABLE OF CHARACTERISTICS

<table>
<thead>
<tr>
<th>CPVO N°</th>
<th>UPOV N°</th>
<th>Stage, Method</th>
<th>Characteristics</th>
<th>Examples</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
<td>VG</td>
<td>Seedling: anthocyanin coloration of hypocotyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(*)</td>
<td></td>
<td>(+)</td>
<td>absent</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td></td>
<td>present</td>
<td>Beaufort</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>2.</td>
<td>2.</td>
<td>VG</td>
<td>Plant: height</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td></td>
<td>short</td>
<td>Big Power</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>QN</td>
<td></td>
<td>medium</td>
<td>Maxifort</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>tall</td>
<td>Beaufort</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>3.</td>
<td>3.</td>
<td>VG</td>
<td>Stem: anthocyanin coloration of upper third</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QN</td>
<td>(a)</td>
<td>absent or very weak</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>weak</td>
<td>Arnold</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>medium</td>
<td>Beaufort</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>strong</td>
<td>Montezuma</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>4.</td>
<td>VG/MS</td>
<td>Stem: length of internode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td>(a)</td>
<td>short</td>
<td>Big Force</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>QN</td>
<td></td>
<td>medium</td>
<td>Maxifort</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>long</td>
<td>Beaufort</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>5.</td>
<td>VG/MS</td>
<td>Leaf: length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(*)</td>
<td>(a)</td>
<td>short</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>QN</td>
<td></td>
<td>medium</td>
<td>Body</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>long</td>
<td>Maxifort</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>6.</td>
<td>VG/MS</td>
<td>Leaf: width</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(*)</td>
<td>(a)</td>
<td>narrow</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>QN</td>
<td></td>
<td>medium</td>
<td>Body</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>broad</td>
<td>Emperador</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CPVO N°</td>
<td>UPOV N°</td>
<td>Stage, Method</td>
<td>Characteristics</td>
<td>Examples</td>
<td>Note</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>7.</td>
<td>7.</td>
<td>VG</td>
<td>Leaf: size of leaflets</td>
<td>(+) (a)</td>
<td>very small 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QN</td>
<td>small</td>
<td>Titron 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>medium</td>
<td>Big Force 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>large</td>
<td>Beaufort 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>very large</td>
<td>Hires 1210 9</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>8.</td>
<td>VG</td>
<td>Leaf: intensity of green colour</td>
<td>(*) (a)</td>
<td>light 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QN</td>
<td>medium</td>
<td>Maxifort 7</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>9.</td>
<td>VG</td>
<td>Leaf: glossiness</td>
<td>(+) (a)</td>
<td>weak Montezuma 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QN</td>
<td>medium</td>
<td>Titron 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>strong</td>
<td>Maxifort 3</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>10.</td>
<td>VG</td>
<td>Leaf: blistering</td>
<td>(+) (a)</td>
<td>weak Montezuma 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QN</td>
<td>medium</td>
<td>Emperador 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>strong</td>
<td>Body 3</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>11.</td>
<td>VG</td>
<td>Fruit: green shoulder</td>
<td>QL (*) (c)</td>
<td>absent 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
<td>present</td>
<td>Maxifort 9</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>12.</td>
<td>VG</td>
<td>Fruit: extent of green shoulder</td>
<td>(+) (* (c)</td>
<td>small Big Force 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QN</td>
<td>medium</td>
<td>Maxifort 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>large</td>
<td>Maxifort 7</td>
<td></td>
</tr>
<tr>
<td>CPVO N°</td>
<td>UPOV N°</td>
<td>Stage, Method</td>
<td>Characteristics</td>
<td>Examples</td>
<td>Note</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>13.</td>
<td>13.</td>
<td>VG</td>
<td>Fruit: intensity of green colour of shoulder</td>
<td>(*) (c) light</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>medium</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dark</td>
<td>7</td>
</tr>
<tr>
<td>14.</td>
<td>14.</td>
<td>VG</td>
<td>Fruit: conspicuousness of meridian stripes</td>
<td>(+) (c) very weak</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>He Wolf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>weak</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Popeye</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>medium</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Body</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>strong</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vigomax</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>very strong</td>
<td>5</td>
</tr>
<tr>
<td>15.</td>
<td>15.</td>
<td>VG/MS</td>
<td>Pedicel: length</td>
<td>(+) (b) short</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Titron</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>medium</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Multifort</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>long</td>
<td>7</td>
</tr>
<tr>
<td>16.</td>
<td>16.</td>
<td>VG</td>
<td>Fruit: size</td>
<td>(*) (b) small</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Body, Optifort</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>medium</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Emperador</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>large</td>
<td>7</td>
</tr>
<tr>
<td>17.</td>
<td>17.</td>
<td>VG</td>
<td>Fruit: shape in longitudinal section</td>
<td>(+) (*) (b) broad oblate</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>He-Wolf</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>narrow oblate</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gladiator</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>circular</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maxifort</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>obovate</td>
<td>4</td>
</tr>
<tr>
<td>18.</td>
<td>18.</td>
<td>VG/MS</td>
<td>Fruit: number of locules</td>
<td>(*) (b) only two</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maxifort</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>two and three</td>
<td>2</td>
</tr>
<tr>
<td>CPVO N°</td>
<td>UPOV N°</td>
<td>Stage, Method</td>
<td>Characteristics</td>
<td>Examples</td>
<td>Note</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------------</td>
<td>----------------------------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>19.</td>
<td>19.</td>
<td>VG</td>
<td>Fruit: colour at maturity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(*)</td>
<td>(b)</td>
<td>green</td>
<td>Big Force</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PQ</td>
<td></td>
<td>yellowish</td>
<td>Vigomax</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>orangish</td>
<td>Titron</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>reddish</td>
<td>Brigeor</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>20.</td>
<td>MG</td>
<td>Time of flowering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QN</td>
<td></td>
<td>early</td>
<td>He-Man</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>medium</td>
<td>Body</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>late</td>
<td>Popeye</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>21. (+)</td>
<td>21.</td>
<td>VG</td>
<td>Autonecrosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(*)</td>
<td></td>
<td>absent</td>
<td>Maxifort</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>present</td>
<td>Body</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>22. (*)</td>
<td>22.</td>
<td>VG</td>
<td>Resistance to Meloidogyne incognita (Mi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td>(*)</td>
<td>susceptible</td>
<td>Bruce</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>QN</td>
<td></td>
<td>moderately resistant</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>highly resistant</td>
<td>Emperador</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>23. (*)</td>
<td>23.</td>
<td>VG</td>
<td>Resistance to Verticillium sp. (Va and Vd) - Race 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td>(*)</td>
<td>absent</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td></td>
<td>present</td>
<td>Big Power</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>24. (+)</td>
<td>24.</td>
<td></td>
<td>Resistance to Fusarium oxysporum f. sp. lycopersici (Fol)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.1 (+)</td>
<td>24.1</td>
<td>VG</td>
<td>- Race 0 (ex 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td></td>
<td>absent</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td>present</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CPVO N°</td>
<td>UPOV N°</td>
<td>Stage, Method</td>
<td>Characteristics</td>
<td>Examples</td>
<td>Note</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>24.2 (*)</td>
<td>24.2 (*)</td>
<td>VG</td>
<td>- Race 1 (ex 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td>absent</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>present</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>24.3 (*)</td>
<td>24.3 (*)</td>
<td>VG</td>
<td>- Race 2 (ex 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td>absent</td>
<td>Emperador</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>present</td>
<td>Colosus</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>25. (*)</td>
<td>25. (*)</td>
<td>VG</td>
<td>- Resistance to Fusarium oxysporum f. sp. radicis-lycopersici (Forl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td>absent</td>
<td>Kemerit</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td>present</td>
<td>Emperador</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>26. (+)</td>
<td>26. (+)</td>
<td>VG</td>
<td>- Resistance to Fulvia fulva (Ff) (ex Cladosporium fulvum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.1 26.1</td>
<td>VG</td>
<td>- Race 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td>absent</td>
<td>King Kong</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present</td>
<td>Bruce</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>26.2 26.2</td>
<td>VG</td>
<td>- Group A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td>absent</td>
<td>King Kong</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present</td>
<td>Big Power</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>26.3 26.3</td>
<td>VG</td>
<td>- Group B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td>absent</td>
<td>King Kong</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present</td>
<td>Bruce</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>26.4 26.4</td>
<td>VG</td>
<td>- Group C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td>absent</td>
<td>King Kong</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present</td>
<td>Big Power</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>26.5 26.5</td>
<td>VG</td>
<td>- Group D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td>absent</td>
<td>King Kong</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>present</td>
<td>Bruce</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CPVO N°</td>
<td>UPOV N°</td>
<td>Stage, Method</td>
<td>Characteristics</td>
<td>Examples</td>
<td>Note</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>26.6</td>
<td>26.6</td>
<td>VG</td>
<td>- Group E</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QL absent</td>
<td>Bruce, King Kong</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QL present</td>
<td>Big Power</td>
<td>9</td>
</tr>
<tr>
<td>27. (+)</td>
<td>27.</td>
<td></td>
<td>Resistance to Tomato mosaic virus (ToMV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.1</td>
<td>27.1</td>
<td>VG</td>
<td>- Strain 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QL absent</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QL present</td>
<td>Emperador</td>
<td>9</td>
</tr>
<tr>
<td>27.2</td>
<td>27.2</td>
<td>VG</td>
<td>- Strain 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QL absent</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QL present</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>27.3</td>
<td>27.3</td>
<td>VG</td>
<td>- Strain 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QL absent</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>QL present</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>28 (+)</td>
<td>28.</td>
<td>VG</td>
<td>Resistance to Pyrenochaeta lycopersici (Pl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td></td>
<td></td>
<td>absent</td>
<td>Zaralto</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td>present</td>
<td>Emperador</td>
<td>9</td>
</tr>
<tr>
<td>29. (+)</td>
<td>29.</td>
<td>VG</td>
<td>Resistance to Stemphylium spp. (Ss)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td></td>
<td></td>
<td>absent</td>
<td>Big Power</td>
<td>1</td>
</tr>
<tr>
<td>QL</td>
<td></td>
<td></td>
<td>present</td>
<td>Body</td>
<td>9</td>
</tr>
<tr>
<td>30. (+)</td>
<td>30.</td>
<td>VG</td>
<td>Resistance to Tomato yellow leaf curl virus (TYLCV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td></td>
<td></td>
<td>absent</td>
<td>Big Power</td>
<td>1</td>
</tr>
<tr>
<td>QL</td>
<td></td>
<td></td>
<td>present</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>31. (+)</td>
<td>31.</td>
<td>VG</td>
<td>Resistance to Tomato spotted wilt virus (TSWV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td></td>
<td></td>
<td>absent</td>
<td>Big Power</td>
<td>1</td>
</tr>
<tr>
<td>QL</td>
<td></td>
<td></td>
<td>present</td>
<td>Enpower</td>
<td>9</td>
</tr>
<tr>
<td>CPVO N°</td>
<td>UPOV N°</td>
<td>Stage, Method</td>
<td>Characteristics</td>
<td>Examples</td>
<td>Note</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>32.</td>
<td>32.</td>
<td>VG</td>
<td>Resistance to Oidium neolycopersici (On)</td>
<td>Multifort</td>
<td></td>
</tr>
<tr>
<td>(+)</td>
<td></td>
<td>absent</td>
<td></td>
<td>(+)</td>
<td>1</td>
</tr>
<tr>
<td>QL</td>
<td></td>
<td>present</td>
<td></td>
<td>Multifort</td>
<td>9</td>
</tr>
</tbody>
</table>
8. EXPLANATIONS ON THE TABLE OF CHARACTERISTICS

8.1 Explanations covering several characteristics

Characteristics containing the following key in the first column of the Table of Characteristics should be examined as indicated below:

(a) Observations on the plant, stem and leaves should be done after a fruit set on at least five trusses and before ripening of the second truss. Observations should be done before deterioration of the leaves.

(b) Observations on the fruit should be made on mature fruits from the second or higher truss.

(c) Observations on the green shoulder and meridian stripes of the fruit should be made on the plant before maturity.

8.2 Explanations for individual characteristics

Ad. 1: Seedling: anthocyanin coloration of hypocotyl

![Seedling: anthocyanin coloration of hypocotyl](image)

Ad. 2: Plant: height

To be observed after fruit set on 5 nodes.

Ad. 4: Plant: height

The mean length of the internodes between the 1st and 4th trusses should be assessed.

Ad. 7: Leaf: size of leaflets

The size of the leaflet should be observed in the middle of the leaf.

Ad. 9: Leaf: glossiness

The glossiness of the leaf should be observed in the middle of the plant.
Ad. 10: Leaf: blistering

Caution is required for confusion between blistering and creasing. Blistering is the difference in height of the surface of the leaf between the veins. Creasing is independent from the veins. The blistering should be observed in the middle third of the plant.

Ad. 12: Fruit: extent of green shoulder

The gene for green shoulder might not be clearly expressed in some conditions.

![Scale for fruit extent](image)

3: small (1/4)
5: medium (1/3)
7: large (1/2)

Ad. 14: Fruit: conspicuousness of meridian stripes

![Examples of fruit appearance](image)

2: weak
3: medium
4: strong

Ad. 15: Pedicel: length
Ad. 17: Fruit: shape in longitudinal section

The apex is considered to be the part that is furthest from the stalk attachment.

1. broad oblate
2. narrow oblate
3. circular
4. obovate

Ad. 21: Autonecrosis

Autonecrosis is a necrotic reaction to the presence of incompatible genomes causing older leaves to wither and die.

Ad. 22: Resistance to *Meloidogyne incognita* (Mi)

1. Pathogen *Meloidogyne incognita*
2. Host species *Solanum lycopersicum*
3. Source of inoculum Naktuinbouw (NL)\(^1\) or GEVES\(^2\) (FR)
4. Isolate non-resistance breaking
5. Establishment isolate identity ... use rootstock or tomato standards
6. Establishment pathogenicity use susceptible rootstock or tomato standard
7. Multiplication inoculum 8.1 Multiplication medium living plant
8.2 Multiplication variety preferably resistant to powdery mildew
8.3 Plant stage at inoculation see 10.3
8.5 Inoculation method see 10.4
8.6 Harvest of inoculum root systems are cut with scissors into pieces of about 1 cm length
8.7 Check of harvested inoculum ... visual check for presence of root knots
8.8 Shelf life/viability inoculum 1 day
9. Format of the test
9.1 Number of plants per genotype 20 plants
9.2 Number of replicates 1 replicate
9.3 Control varieties Bruce and (*Solanum lycopersicum*) Clairvil, Casaque Rouge
9.4 Test design include standard varieties
9.5 Test facility greenhouse or climate room
9.6 Temperature not over 28° C
9.7 Light at least 12 h per day
10. Inoculation 10.1 Preparation inoculum small pieces of diseased root mixed with soil mix soil and infested root pieces
10.2 Quantification inoculum soil: root ratio = 8:1, or depending on experience
10.3 Plant stage at inoculation seed, or cotyledons
10.4 Inoculation method plants are sown in infested soil or contamination of soil after sowing when plantlets are at cotyledon stage
10.7 Final observations 28 to 45 days after inoculation
11. Observations
11.1 Method root inspection
11.2 Observation scale Symptoms: Galling, root malformation, growth reduction, plant death
11.3 Validation of test evaluation of variety resistance should be calibrated with results of resistant and susceptible controls on standards

1 Naktuinbouw; resistentie@naktuinbouw.nl
2 GEVES; Valerie.grimault@geves.fr
12. Interpretation of test results in comparison with control varieties

To consider that resistant varieties may have a few plants with falls. These are not considered as off-types.

- absent (susceptible) [1]: growth strongly reduced, high gall count
- intermediate (moderately resistant) [2]: medium growth reduction, medium gall count
- present (highly resistant) [3]: no growth reduction, no galls

13. Critical control points

- Avoid rotting of roots; high temperature causes breakdown of resistance

Ad. 23: Resistance to *Verticillium* sp. (Va and Vd)

1. Pathogen .. *Verticillium dahliae* or *Verticillium albo-atrum* (see note below)
2. Host species *Solanum lycopersicum*
3. Source of inoculum Naktuinbouw (NL) or GEVES (FR)
4. Isolate .. Race 0 (e.g. strain Toreilles 4-1-4-1)
5. Preparation inoculum aerated, liquid culture (8.4)
6. Quantification inoculum count spores, adjust to 10^6 per ml
7. Plant stage at inoculation cotyledon to third leaf
8. Inoculation method roots are immersed for 4 to 15 min in spore suspension
9. Final observations 14-33 days after inoculation
10. Observations visual
11. Observation scale growth retardation, wilting, chlorosis, and vessel browning
12. Validation of test evaluation of variety resistance should be calibrated with results of resistant and susceptible controls. Standards near borderline R/S will help to compare between laboratories.

12. Interpretation of test results in comparison with control varieties

- absent [1]: severe symptoms
- present [9]: mild or no symptoms

13. Critical control points

All symptoms may be present in resistant varieties, but the severity will be distinctly less than in susceptible varieties. Usually resistant varieties will show significantly less growth retardation than susceptible varieties

3 Naktuinbouw; resistentie@naktuinbouw.nl
4 GEVES; Valerie.grimault@geves.fr
Ad. 24: Resistance to *Fusarium oxysporum* f. sp. *lycopersici* (Fol)

1. Pathogen .. *Fusarium oxysporum* f. sp. *lycopersici*
2. Host species *Solanum lycopersicum*
3. Source of inoculum Naktuinbouw (NL)\(^5\) or GEVES\(^6\) (FR)
4. Isolate ... Race 0 (ex 1) (e.g. strains Orange 71 or PRI 20698 or Fol 071 1 (ex 2) (e.g. strains 4152 or PRI40698 or RAF 70 and 2 (ex 3) Individual strains may vary in pathogenicity
5. Establishment isolate identity use differential varieties (see 9.3)
6. Establishment pathogenicity on susceptible varieties
7. Multiplication inoculum.......... Potato Dextrose Agar, Medium "S" of Messiaen
8. Multiplication medium Potato Dextrose Agar, Medium "S" of Messiaen
9. Harvest of inoculum filter through double muslin cloth
10. Inoculation medium water for scraping agar plates or Czapek-Dox broth culture medium (7 d-old aerated culture)
11. Shelf life/viability inoculum 4-8 h, keep cool to prevent spore germination
12. Multiplication isolates identity use different varieties (see 9.3)
13. Establishment pathogenicity on susceptible varieties
14. Test design >20 plants; e.g. 35 seeds for 24 plants, including 2 blanks
15. Test facility greenhouse or climate room
16. Temperature 24-28°C (severe test, with mild isolate)
17. Season all seasons
18. Special measures slightly acidic peat soil is optimal; keep soil humid but avoid water stress
19. Preparation inoculums aerated Messiaen or PDA or Agar Medium S of Messiaen or Czapek Dox culture or scraping of plates
20. Quantification inoculum spore count, adjust to 10\(^6\) per ml, Lower concentration for a very aggressive isolate
21. Plant stage at inoculation....... 10-18 d, cotyledon to first leaf
22. Inoculation method roots and hypocotyls are immersed in spore suspension
23. Final observations 14-21 days after inoculation
24. Observations visual
25. Observation scale Symptoms: growth retardation, wilting, yellowing, vessel browning extending above cotyledon
26. Validation of test evaluation of variety resistance should be calibrated with results of
27. Interpretation of test results in comparison with control varieties absent [1] severe symptoms
28. Critical control points Test results may vary slightly in inoculum pressure due to differences in isolate, spore concentration, soil humidity and temperature. Standards near borderline R/S will help to compare between labs

\(^{5}\) Naktuinbouw; resistentie@naktuinbouw.nl
\(^{6}\) GEVES; Valerie.grimault@geves.fr
Ad. 25: Resistance to *Fusarium oxysporum* f. sp. *radicis-lycopersici* (Forl)

1. Pathogen ... *Fusarium oxysporum* f. sp. *radicis-lycopersici*
2. Host species *Solanum lycopersicum*
3. Source of inoculum Naktuinbouw (NL)\(^7\) or GEVES\(^8\) (FR)
4. Isolate .. -
5. Establishment pathogenicity................. symptoms on susceptible tomato
6. Multiplication inoculum
5.1 Multiplication medium Potato Dextrose Agar or Medium agar “S” of Messiaen
5.2 Inoculation medium water for scraping agar plates or Czapek-Dox (7 d-old aerated culture)
5.3 Harvest of inoculum filter through double muslin cloth
5.4 Check of harvested inoculum spore count, adjust to 10\(^6\) per ml
5.5 Shelf life/viability inoculum 4-8 h, keep cool to prevent spore germination
7. Number of plants per genotype at least 20 plants
8. Number of replicates 1 replicate
9. Control varieties
 Susceptible: Kermit and *(Solanum lycopersicum)* Motelle, Moneymaker
 Resistant: Emperor and *(Solanum lycopersicum)* Momor, “Momor x Motelle”
 Remark: "Momor x Motelle” has slightly weaker resistance than Momor

9.1 Test design >20 plants; e.g. 35 seeds for 24 plants, including 2 blanks
9.2 Test facility glasshouse or climate room
9.3 Temperature 24-28°C (severe test, with mild isolate)
9.4 Light .. at least 12 hours per day
9.5 Temperature 17-24°C (mild test, with severe isolate)
9.6 Season .. all seasons

9.7 Method .. visual; a few plants are lifted at the end of the test
9.8 Observation scale Symptoms: plant death, growth retardation caused by root degradation
9.9 Validation of test evaluation of variety resistance should be calibrated with results of resistant and susceptible controls

10. Inoculation
10.1 Preparation inoculum aerated culture or scraping of plates
10.2 Quantification inoculum spore count, adjust to 10\(^6\) per ml
10.3 Plant stage at inoculation 12-18 d, cotyledon to third leaf
10.4 Inoculation method roots and hypocotyls are immersed in spore suspension for 5-15 min
10.5 Final observations 10-21 days after inoculation
11. Observations
11.1 Method visual; a few plants are lifted at the end of the test
11.2 Observation scale Symptoms: plant death, growth retardation caused by root degradation
11.3 Validation of test evaluation of variety resistance should be calibrated with results of resistant and susceptible controls

12. Interpretation of test results in comparison with control varieties
 absent \([1]\) symptoms
 present \([9]\) no symptoms

13. Critical control points Temperature should never exceed 27°C during the test period; frequent renewal of races may be needed because of loss of pathogenicity

\(^7\) Naktuinbouw; resistentie@naktuinbouw.nl
\(^8\) GEVES; Valerie.grimault@geves.fr
Ad. 26: Resistance to *Fulvia fulva* (FF) (ex *Cladosporium fulvum*)

1. Pathogen *Fulvia fulva* (ex *Cladosporium fulvum*)
2. Host species *Solanum lycopersicum*
3. Source of inoculum Naktuinbouw (NL) or GEVES (FR)
4. Isolate Race group 0, A, B, C, D and E
5. Establishment isolate identity with genetically defined differentials from GEVES (FR) A breaks Cf-2, B Cf-4, C Cf-2&4, D Cf-5, E Cf-2&4&5
6. Establishment pathogenicity symptoms on susceptible tomato
7. Multiplication inoculum
8. Multiplication medium Potato Dextrose Agar or Malt Agar or a synthetic medium
9. Format of the test
10. Number of plants per genotype more than 20 plants
11. Number of replicates 1 replicate
12. Control varieties
 Susceptible: King Kong and (*Solanum lycopersicum*) Monalbo, Moneymaker
 Resistant for race 0: Bruce and (*Solanum lycopersicum*) Angela, Estrella, Sonatine, Sonata,
 Vermone, Vagabond, IVT 1149, Vagabond x IVT 1149, IVT 1154
 Resistant for race group A:......... Big Power and (*Solanum lycopersicum*) Angela, Estrella, Sonatine, Sonata
 Resistant for race group B:......... Bruce and (*Solanum lycopersicum*) Angela, Estrella, Sonatine, Sonata,
 Vermone
 Resistant for race group C:......... Big Power and (*Solanum lycopersicum*) Angela, Estrella, Sonatine
 Resistant for race group D:......... Bruce and (*Solanum lycopersicum*) Estrella, Sonatine, Vermone
 Resistant for race group E:......... Big Power and (*Solanum lycopersicum*) Sonatine, Jadviga, Rhianna,
 IVT 1154

13. Critical control points Ff spores have a variable size and morphology. Small spores are also viable. Fungal plates will gradually become sterile after 6-10 weeks. Store good culture at -80°C. For practical purposes, it is not possible to keep plants longer than 14 days inside a ten.

9 Naktuinbouw; resistentie@naktuinbouw.nl
10 GEVES; Valerie.grimault@geves.fr
Ad. 27: Resistance to Tomato mosaic virus (ToMV)

1. Pathogen: Tomato mosaic virus
2. Host species: Solanum lycopersicum
3. Source of inoculum: Naktuinbouw (NL)\(^{11}\) or GEVES\(^{12}\) (FR)
4. Isolate: Strain 0 (e.g. isolate INRA Avignon 6-5-1-1) 1 and 2
5. Establishment isolate identity: genetically defined tomato standards Mobaci (Tm1), Moperou (Tm2), Momor (Tm2\(^2\))
6. Establishment pathogenicity: on susceptible plant
7. Multiplication inoculum
 8.1 Multiplication medium: living plant
 8.2 Multiplication variety: e.g. Money-maker, Marmande
8. Check of harvested inoculum: option: on Nicotiana tabacum "Xanthi", check lesions after 2 days
9. Shelf life/viability inoculum: fresh>1 day, desiccated>1year
10. Format of the test
11. Number of plants per genotype: at least 20 plants
12. Number of replicates: 1 replicate
13. Control varieties
 Susceptible: (Solanum lycopersicum) Marmande, Monalbo
 Resistant for ToMV: 0 and 2 (Solanum lycopersicum) Mobaci
 Resistant for ToMV: 0 and 1 (Solanum lycopersicum) Moperou
 Resistant with necrosis (Solanum lycopersicum) "Monalbo x Momor"
 Resistant (Solanum lycopersicum) Gourmet
9.4 Test design: blank treatment with PBS and carborundum or similar buffer
9.5 Test facility: glasshouse or climate room
9.6 Temperature: 22 to 26°C
9.7 Light: 12 hours or longer
9.8 Season: symptoms are more pronounced in summer
10. Inoculation
10.1 Preparation inoculums: 1 g leaf with symptoms with 10 ml PBS or similar buffer. Homogenize, add carborundum to buffer (1 g/30ml)
10.3 Plant stage at inoculation: cotyledons or 2 leaves
10.4 Inoculation method: gentle rubbing
10.7 Final observations: 11-21 days after inoculation
11. Observations
11.1 Method: visual
11.2 Observation scale: Symptoms of susceptibility: Mosaic in top, leaf malformation
 Symptoms of resistance (based on hypersensitivity): Local Necrosis, Top Necrosis, Systemic Necrosis
11.3 Validation of test: evaluation of variety resistance should be calibrated with results of resistant and susceptible controls

Remark: in some heterozygous varieties a variable proportion of plants may have severe systemic necrosis or some necrotic spots while the other plants have no symptoms. This proportion may vary between experiments
12. Interpretation of test results in comparison with control varieties
 absent [1] symptoms of susceptibility
 present [9] no symptoms, or symptoms of hypersensitive resistance
13. Critical control points: Temperature and light may influence the development of necrosis. More light means more necrosis. At temperatures above 26°C the resistance may break down.

Resistant heterozygous varieties may have symptomless plants and plants with severe necrosis; in spite of apparent segregation the sample may be evaluated as uniform for resistance.

Note: Strain INRA Avignon 6-5-1-1 is recommended for ToMV: 0. This strain causes a striking yellow Aucuba mosaic

\(^{11}\) Naktuinbouw; resistente@naktuinbouw.nl
\(^{12}\) GEVES; Valerie.grimault@geves.fr
Ad. 28: Resistance to *Pyrenochaeta lycopersici* (Pl)

1. Pathogen ..*Pyrenochaeta lycopersici*
2. Host species*Solanum lycopersicum*
3. Source of inoculum -
4. Isolate .. -
5. Establishment pathogenicity.......... biotest
6. Multiplication inoculum
7. Multiplication medium V8 Agar
8. Multiplication variety susceptible tomato variety
9. Plant stage at inoculation seed
10. Inoculation medium mixture of soil, e.g. (70%), sand (20%) and inoculum (10.1) (10%) or soil mixed with diseased roots cut to small pieces
11. Inoculation method sowing, or transplanting at fruit maturity
12. Harvest of inoculum diseased roots are harvested after 2-4 months
13. Check of harvested inoculum visual inspection of lesions on roots
14. Shelf life/viability inoculum the fungus will not die quickly, but may lose its pathogenicity within a week after isolation on an agar medium

9. Format of the test
9.1 Number of plants per genotype 20 plants
9.2 Number of replicates 1 replicate
9.3 Control varieties
 Susceptible: Zaralto and (*Solanum lycopersicum*) Monfavet H 63.5
 Resistant: Emperador and (*Solanum lycopersicum*) Kyndia, Moboglan, Pyrella
9.4 Temperature day 24°C, night 14°C
9.5 Test facility greenhouse or climate room
9.6 Light ... 12 hours minimum
10. Inoculation
10.1 Preparation inoculum e.g. double-autoclaved mixture of soil with 10% oatmeal added
10.2 Inoculation variety susceptible tomato variety
10.3 Plant stage at inoculation 6 weeks
10.4 Inoculation method transplanting into mixture of soil, sand and inoculum (8.4) or soil mixed with diseased roots cut to small pieces or naturally infected soil
10.5 Inoculation method transplanting into mixture of soil, sand and inoculum (8.4) or soil mixed with diseased roots cut to small pieces or naturally infected soil
10.6 Harvest of inoculum diseased roots are harvested after 2-4 months
10.7 Check of harvested inoculum visual inspection of lesions on roots
11. Observations
11.1 Method visual
11.2 Observation scale Symptoms: brown lesions on roots
11.3 Validation of test evaluation of variety resistance should be calibrated with results of resistant and susceptible controls
12. Interpretation of test results in comparison with control varieties
 absent [1] symptoms
 present [9] no symptoms
13. Critical control points............... The fungus loses its pathogenicity quickly after isolation on an agar medium. It is advisable to keep the isolate alive on living plants.
Ad. 29: Resistance to *Stemphylium* spp. (Ss)

1. Pathogen *Stemphylium* spp. e.g. *Stemphylium solani* (see note below)
2. Host species *Solanum lycopersicum*
3. Source of inoculum GEVES\(^{13}\) (FR)
4. Isolate -
5. Establishment pathogenicity biotest
6. Multiplication inoculum
7. Multiplication medium PDA (12 hours per day under near-ultraviolet light to induce sporulation)
 or V8
8. Format of the test
9. Number of plants per genotype at least 20 plants
9.2 Number of replicates 1 replicate
9.3 Control varieties
 Susceptible: Big Power and (*Solanum lycopersicum*) Monalbo
 Resistant: Body and (*Solanum lycopersicum*) Motelle, F1 Motelle x Monalbo
9.5 Test facility greenhouse or climate cell
9.6 Temperature 24°C
9.7 Light 12 hours minimum
9.9 Special measures incubation in tunnel with 100% relative humidity or humidity tent closed
 5 days after inoculation, after this, 80% until end
10. Inoculation
10.1 Preparation inoculum sporulating plates (8.1) are scraped and air-dried overnight
 The next day plates are soaked and stirred for 30 min in a beaker with
demineralized water, or sporulating plates are scraped with water with
 Tween
 The spore suspension is sieved through a double layer of muslin.
10.2 Quantification inoculum 5.10\(^3\) - 10\(^5\) spores per ml
10.3 Plant stage at inoculation 20-22 days (three expanded leaves)
10.4 Inoculation method spraying
10.7 Final observations 4-10 days after inoculation
11. Observations
11.1 Method visual
11.2 Observation scale Symptoms: necrotic lesions on cotyledons and leaves; yellowing of leaves
11.3 Validation of test evaluation of variety resistance should be calibrated with results of
 resistant and susceptible controls
12. Interpretation of test results in comparison with control varieties
 absent [1] symptoms (11.2)
 present [9] no symptoms, or than resistant standard
13. Critical control points 8.1 and 10.1

Note: Some isolates of *Stemphylium* cannot be classified easily as either *Stemphylium solani* or a related species. These *Stemphylium* isolates may still be useful for identifying resistance to *Stemphylium solani.\(^{13}\)

Ad. 30: Resistance to Tomato yellow leaf curl virus (TYLCV)

1. Pathogen Tomato yellow leaf curl virus (see note below)
2. Quarantine status yes
3. Host species *Solanum lycopersicum*
4. Source of inoculum -
5. Isolate -
6. Multiplication inoculum
7. Multiplication medium symptomatic leaves may be stored at -70°C
8. Format of the test
9. Number of plants per genotype 20 plants
9.2 Number of replicates 1 replicate
9.3 Control varieties
 Susceptible: (*Solanum lycopersicum*) Montfavet H 63.5
 Resistant: (*Solanum lycopersicum*) TY 20, Anastasia, Mohawk
9.5 Test facility field with natural disease pressure
9.9 Special measures prevent spread of white-flies

\(^{13}\) GEVES; Valerie.grimault@geves.fr
10. Inoculation
10.3 Plant stage at inoculation 6-12 weeks (adult plants)
10.4 Inoculation method vector (Bermisia white-flies carrying TYLCV)
10.7 Final observations 1-2 months after inoculation
11. Observations
11.1 Method.................................. visual
11.2 Observation scale Symptoms: leaf yellowing and curling
11.3 Validation of test..................... evaluation of variety resistance should be calibrated with results of resistant and susceptible controls
12. Interpretation of test results in comparison with control varieties
 absent [1] severe symptoms
 present [9] no or mild symptoms
13. Critical control points.............. TYLCV is endemic in many tropical and subtropical areas and has a quarantine status in many countries with a temperate climate. TYLCV is on the EPPO alert list. Some TYLCV resistant varieties may be susceptible to the closely related virus Tomato yellow leaf curl Sardinia virus (TYLCSV)

Ad. 31: Resistance to Tomato spotted wilt virus (TSWV)

1. Pathogen Tomato spotted wilt virus (see note below)
2. Quarantine status yes (see note below)
3. Host species Solanum lycopersicum
4. Source of inoculum Naktuinbouw 14 (NL), GEVES 15 (FR)
5. Isolate race 0, preferably a thrips-transmission deficient variant
7. Establishment pathogenicity biotest
8. Multiplication inoculum
 8.6 Harvest of inoculum symptomatic leaves may be stored at -70°C
9. Format of the test
9.1 Number of plants per genotype 20 plants
9.2 Number of replicates............... 1 replicate
9.3 Control varieties
 Susceptible:.......................... Big Power and (Solanum lycopersicum) Monalbo, Momor, Montfavet H 63.5
 Resistant: Enpower and (Solanum lycopersicum) Tsunami, Bodar, PI-Mospomor, Lisboa
9.5 Test facility.......................... glasshouse or climatic chamber
9.6 Temperature 20°C
9.7 Light 12 hours or longer
9.9 Special measures prevent or combat thrips
10. Inoculation
10.1 Preparation inoculum press symptomatic leaves in ice-cold buffer 0.01 M PBS, pH 7.4, with 0.01 M sodium sulfite or similar buffer Option: sieve the leaf sap through double muslin
10.3 Plant stage at inoculation one or two expanded leaves
10.4 Inoculation method mechanical, rubbing with carborundum on cotyledons, inoculum suspension < 10⁶ C
10.7 Final observations 7-21 days after inoculation
11. Observations
11.1 Method.................................. visual
11.2 Observation scale Symptoms: top mosaic, bronzing, various malformations, necrosis
11.3 Validation of test..................... evaluation of variety resistance should be calibrated with results of resistant and susceptible controls
12. Interpretation of test results in comparison with control varieties
 absent [1] symptoms
 present [9] no symptoms
13. Critical control points.............. TSWV has a quarantine status in some countries. TSWV is transmitted by Thrips tabaci and Western flower thrips (Frankliniella occidentalis). Pathotype 0 is defined by its inability to break resistance in tomato varieties carrying the resistance gene Sw-5.

14 Naktuinbouw: resistentie@naktuinbouw.nl
15 GEVES; Valerie.grimault@geves.fr
Ad. 32: Resistance to *Oidium neolycopersici* (On)

1. Pathogen *Oidium neolycopersici* (Powdery mildew)
2. Host species *Solanum lycopersicum*
3. Source of inoculum -
4. Isolate see remark under 13
5. Establishment pathogenicity biotest
6. Multiplication inoculum
 6.1 Multiplication medium plant
 6.2 Plant stage at inoculation 3 weeks
 6.4 Inoculation method see 10.4
 6.5 Harvest of inoculum by washing off
 6.6 Check of harvested inoculum.... check for contaminants under microscope
 6.7 Shelf life/viability inoculum 1-2 hours
7. Format of the test
 7.1 Number of plants per genotype 20 plants
 7.2 Number of replicates............... 1 replicate
 9.5 Test facility glasshouse
 9.6 Temperature 20°C or 18/24°C
 9.7 Light 12 hours
8. Inoculation
 8.1 Preparation inoculum collect spores in water
 8.2 Quantification inoculum 10^4 conidia/ml
 8.3 Plant stage at inoculation 3 weeks
 8.4 Inoculation method by spraying on leaves or dredging of leaves
 10.7 Final observations 7-18 days after inoculation
9. Observations
 11.1 Method visual
 11.2 Observation scale 0. no sporulation
 1. necrotic points and sometimes locally restricted sporulation
 2. moderate sporulation
 3. abundant sporulation
 11.3 Validation of test evaluation of variety resistance should be calibrated with results of resistant and susceptible controls
10. Interpretation of test results in comparison with control varieties
 absent [1] moderate or abundant sporulation
 present [9] no or restricted sporulation
13. Critical control points Resistance-breaking isolates should be avoided. Resistance to *O. neolycopersici* is usually race-specific. However, as long as a differential series of tomato genotypes with well-defined resistances is lacking, it will remain hard to conclude that different races of *O. neolycopersici* exist.
9. LITERATURE

Kjellberg, L., 1973: Sortundersökningar av tomat enligt UPOV, Swedish University of Agricultural Sciences, Research Information Centre, Alnarp Trädgaard 162, SE.

10. TECHNICAL QUESTIONNAIRE

The Technical Questionnaire is available on the CPVO website under the following reference: CPVO-TQ/294/1 Rev.