Imoddus Apple mutant project

Final report

0. Aim and objectives of the “Apple mutant” project:

The apple mutant project aim is to increase the efficiency and reliability of DUS testing of apple
mutants. Its final goal is to develop phenotypic, genetic and epigenetic tools (in the form of molecular
markers) in order to help differentiating apple mutants.

As planned, we focused on the “Gala” variety which is one of the most planted apple varieties in the
world. Furthermore, the variety exhibits a huge number of commercial mutants. Thus, the two
objectives of the project were:

1. to set up, standardized, and develop new high-throughput tools and methods to phenotype
apple fruit skin colour. This part has been increased in comparison to the initial plan.
2. to assess the genetic and epigenetic differences among Gala and its mutants

Initially, the project was quite fully focused on the genetic and epigenetic part but we succeeded to
save some budget on sequencing; with the agreement of CPVO, we decided to dedicate more time
and budget on the phenotyping part which will deliver results more applicable at short term for the
DUS testing.

In this report we summarize the final results obtained from the beginning of the project until March
2020, and provide an update of the work undertaken in the period between March 2020 and October
2021.

1. Genetic, Epigenetic and Transcriptomic

Results obtained from Sept 2019 to March 2020

As mentioned in the intermediate report, all the tissue harvest and analyses have been performed as
planned. In addition to Gala, the other varieties investigated are: Annaglo, Baigent, Delicia, Galaval,
Mitchgla and Rossa.

Over the course of two consecutive years (2018 and 2019), tissues from leaves and fruit skin were
harvested. The genome and epigenome were sequenced from leaves tissues (14 and 28 samples
sequenced, respectively), while gene transcription level was investigated from RNA purified from fruit
skin (28 samples sequenced).

Transcriptome analysis of the Gala mutants:

A total of 62 million reads were generated in total. All the reads were aligned to the apple reference
transcriptome. Using the DeSeq bioinformatic software, differentially expressed genes among Gala
and the mutants were identified (p-value < 0.05; |logFoldChange|>0.5). Among these genes several
were found to be associated with the anthocyanin pathway. This pathway is of particular interest in
this study as the skin colour is one of the most important characters allowing the distinction and



identification of particular mutants. Among the differentially expressed genes we identified
MD17G1272100, which encodes a glutathione transferase and belongs to the phi class of GSTs
(naming convention according to Wagner et al., 2002).
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Venn diagram representing the number of differentially expressed genes identified is each
comparison.

Whole genome sequencing of the Gala mutants:

A total of 120 million reads (150bp PE) were obtained for the 14 samples (2 repetitions per variety).
The alignment of the reads permitted the identification of a large number of genetic modifications in
the form of Single Nucleotide Polymorphism (SNP). The identification of this rather unexpected large
set of SNPs did not allow us to associate the genetic and transcriptomic dataset. However, these SNPs
will provide a great resource for the development of particular genetic markers allowing the
differentiation among Gala mutants.

Whole Epigenome sequencing of the Gala mutants:

The methylome (=epigenome) sequencing was performed over two years on two trees, yielding a total
of over 460 million reads (150bp PE). A primary analysis of this dataset was performed using an
inhouse bioinformatic pipeline allowing the identification of Differentially Methylated Regions
(DMRs). However, this analysis was not completely satisfactory: the analysis permitted the
identification of Differentially Methylated Regions (DMRs) in the genomes of each variety. As such
DMRs could be compared among the Gala and its mutant genomes. However, DMRs are composed of
a series of Differentially Methylated Cytosines (DMCs), and the bioinformatic tools used in this first
approach did not allow us to ascertain whether the DMCs were identical with the DMRs. Therefore,
further development was needed to better analyze this data set and estimate the actual epigenetic
differences among the varieties.

Results obtained from March 2020 to October 2021

The 18 months covered by the period was devoted to the analysis of the methylome sequencing data
generated from Gala and the mutants. This work was mostly performed by bioinformatician (IE -
Skander Hatira) hired by the project (cf Milestones M24-M30).

During this period, several tools and platforms were tested and compared. Following this initial step,
a bioinformatic tool was selected and implemented in a pipeline (BISEPS) in order to analyze remotely



this RAM-consuming analysis of a public cluster. Much of the period was devoted to the development
of this pipeline as well as to the programming of an intuitive and user-friendly interface allowing
biologists to set up and test various parameters allowing (cf Milestones M30-M36).
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Screenshot from the BISEPS pipeline representing the selection of datasets to be compared during
the analysis (control and treatment)

Several approaches were tested to analyze such big data set. As expected from the initial analysis
carried in 2020, the analysis of DMRs did not appear to be the most suited for this analysis. Thus, we
decided to perform an analysis allowing the characterization of individual differentially methylated
cytosines (DMCs). While this analysis generated much more data to exploit, we believe that it is more
appropriate for the analysis we wish to perform as it allows the comparison of epigenetic marks
located on cytosines located at identical coordinates in the genome. Altogether, this analysis allowed
the identification of a total of just over 77,500 differentially methylated cytosine among Gala and the
mutants. A database regrouping the various epigenetic data is implemented as an output of the
bioinformatic pipeline, allowing an efficient visualization of the epigenetic results. This database, in
the form of a genome browser, answers partly to one of the milestones (cf M30-M36), since SNP and
Differentially Expressed Genes generated from the genetic and transcriptomic analyses still need to
be incorporated.
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Screenshot from the genome browser database set up as an automatic output of the BISEPS pipeline.

Among the DMCs, sets of stable epigenetic marks (identified over 2 years and on two biological
replicates) were identified. An example of the selected DMCs is shown in the table below. The analysis
showed that these DMCs are stable over at least two years and over two independent trees in the
environmental conditions of the INRAE orchard of Angers.

selected and could be further exploited for Gala mutants identification in Angers.

DMC1 DMC2 DMC3 DMC4 DMC5 DMC6 DMC7 DMC8 DMC9 DMCIO ypique barcode

101010000-
0110110--0
Delicia 101110010
Galaval 0010-0-100
00--10000-
01100-10-1

- Gain of methylation
- Loss of methylation

Mo difference

Example of stable DMCs identified among Gala and the mutants



Perspectives

The stable DMCs identified in this analysis could be further developed in the future into molecular
markers and tested over additional trees and years to validate their stability. Several of the most
promising of these markers could then be used for variety identification resulting in the determination
of unique barcodes derived from the molecular marker analysis, as exemplified in the above table.
The setup of such a set of robust epigenetic markers will have a concrete impact on the process of
variety identification. Furthermore, this set of markers could facilitate the distinction of new Gala
variants from the existing ones. Finally, this approach could be expanded to other varieties.

Beyond the identification of a set of stable epigenetic marks, further statistical analysis is still
required to fully exploit the generated data sets. We are currently collaborating with statisticians
and bioinformaticians to perform this task. This ultimate approach will also allow us to integrate the
transcriptomic and genetic data in order to complete the database/browser or encompassing all the
information generated in this project.

2. Image processing to distinguish colored mutants

2.1 Materials and methods
2.1.1 Images Acquisition

The acquisition of the images of the different varieties of apples was carried out with the help of
a conveyer machine allowing to move the fruits in translation while carrying out a rotation (see Fig.
1). A camera located at the top of the conveyor belt of the machine with a perpendicular viewing
direction, took pictures of the apples in rotation, which allowed us to have multiple images
providing almost an entire coverage of each apple. Approximately 9 to 10 views of the same apple
were captured thanks to this rotation-translation process. These multiple views are important since
apple may have several major colors on their skins. With the standard visual approach experts have
to manually rotate the apples to have a full perception of the variation of color on a single apple.
Here the machine presented in Fig. 1 can acquire a set of 30 apples in a couple of minutes. Images
were acquired in burst mode with a Canon camera (10.1 megapixels resolution) controlled by a
simple Raspberry-pi minicomputer. Apples were segmented automatically from background as
visible in Fig. 1 and assembled in multiple view images of 30 apples as shown in Figs. 2 and 3. This
machine, developed for this study, is much simpler and lower cost (approximately 10 keuros versus
100 keuros for classical apple sorting machines) than any commercial systems since it does not need
to incorporate any sorting mechanism. Also, by contrast with most commercial system, access to
raw image format, i.e. uncompressed format, is possible.



Figure 1. Acquisition system. Upper panel: Machine equipped with a conveyor belt, used for the
acquisition of images of apples with a high surface coverage. Lower panel: view of the acquired
images of apples after segmentation from the background.

2.1.2 Datasets

Currently, when experts of EO are performing distinctness, they observe directly with their own
eyes boxes of 30 apples of each tested variety and reference varieties manually positioned in a same
room and they decide form a pure subjective perception if these sets are distinct or not from one
another. An objective of this work is to produce a step toward an automation of such examination
through the use of computer vision applied on images such as Figs. 2 and 3 which are automatically
produced after acquisition on the system of Fig. 1. Two datasets were produced for this study to
test the proposed machine vision approach for distinctness evaluation.

e Non-Gala Mutant varieties

We first created a dataset of images of apples with highly distinct color distributions. The dataset is
composed of 1293 images of apples belonging to 8 varieties (see Fig. 2) which we refer to as non-
Gala Mutants. These varieties correspond to varieties identified as distinct from each other by the
official examining offices. These varieties are not named, they simply have a reference number to
identify them.

e Gala mutants

As a complement to the first dataset, we built a second dataset containing 4040 images of apples
belonging to 9 different mutants of the variety Gala. These mutants are similar to each others in



terms of color content as shown in Fig. 3. These mutants are also considered as distinct from each
other by experts of EO but they somehow reach the limit of what they consider as distinct.

Figure 2. Images representing the 8 non-mutant Gala varieties.

2.1.3 3D RGB Histograms

With our objective being to differentiate apples mainly based on the color distribution, we
extracted features from the RGB histogram of the images represented in 3 dimensions (one axis by
component color). We calculated the RGB histogram of each image, and to obtain the RGB
histogram of a variety, we simply calculated the sum of the RGB histograms of the images belonging
to the variety. We can see the corresponding summed histogram of each of the non-Gala mutants
in Fig. 4 and of the Gala mutants (except X8594) in Fig. 5. It is interesting to see that despite the
loss of spatial localiation in RGB histograms a contrast between colors is clearly visible in this
representation with the non-Gala mutants in Fig. 4. However, the contrast is much more difficult
to perceive with RGB histograms in the case of the Gala mutants which represents a clearly
challenging classification task.

Figure 3. Images showing a subset of each Gala Mutant.
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Figure 4. Images representing histograms of non-mutant Gala varieties. From left to right, by
row: variety30, variety37, variety40, variety4l, variety42, variety44, variety46 and variety47.

Figure 5. Images representing histograms of mutant Gala varieties. From left to right, by row:
X4111, X4410, X4712, X6716, X7440, X7812, X8125, X9214.

2.1.4 Color features

Once the histogram of each image and each variety is built, we extract features allowing to
characterize several aspects of the histograms. Same features were used for both datasets. We
present the features used for this study in the rest of this section.

Average and variance of colors: The first two descriptors are the mean and the variance of the
colors. It seems quite intuitive to use them since they give us respectively the average color of the
variety of apples and the contrast of yellow and red regions are captured via the variance. These
two values are easily calculated.

Fractional Anisotropy: Fractional anisotropy is a number in the interval [0, 1] which reflects the
degree of anisotropy of the shape of the point cloud formed by the 3-dimensional histogram. This
scalar gives a measure of the stretch of the point cloud in various directions. If its value is 1, it means
that the points would all be distributed along a perfectly linear axis. If its value is zero, it means that
the points are distributed homogeneously in all directions. Thus, a sphere has a zero fractional
anisotropy, an ellipse has a fractional anisotropy between 0 and 1 and a straight line has a fractional
anisotropy equal to 1. After obtaining the eigenvalues A1, A2 and A3 of the PCA (Principle

Components Analysis) on the 3-dimensional histogram of an image, we can easily calculate the
fractional anisotropy, denoted as FA.



Fractal box counting dimension: The fractal box counting method [2] subdividing the 3D color cube

3
[0, 255]  into 'box’ of the edge length r counts the number of boxes N (r) necessary to cover each
color cell occupied by the point cloud making up the 3D histogram. This number of boxes N (r) has

been found to follow a law of the form r_D where D is the fractal dimension of the histogram [6, 7].
This number ranging between 2 and 3 for natural images provides a description of the structure and
density of the point cloud. A smaller value of fractal dimension indicates that although the
histogram is distributed throughout the color space, there remain empty regions.

Mutual entropy: Mutual entropy [8] allows us to compute the information common to 2 histograms.
We include this mutual entropy as the measure of the color similarity between an image and the
target variety.

Cost of optimal transport: As last feature we propose to include optimal transport [21] which
provides a way of transporting a set of points to another set in the least expensive way possible. In
our case minimizing the total distance between the two sets of points fits with the capability of
optimal transport. Since we work on 3-dimensional histograms of our images, we can measure the
cost in terms of the distance between the histogram of an image and the average histogram of a
target variety. If we assume we have k varieties (here k = 8 or 9 depending on the dataset used), we
get k values representing the cost of moving our image to the k varieties. These k values are treated
as color features each representing a measure of the probability of the image to belong to the
corresponding variety. In practice, we calculated this cost using the python package named POT
(Python Optimal Transport, https://pythonot.github.io/). The cost is computed using the method
based on earth mover’s distance, from 3D histograms. This algorithm has 2 advantages : histograms
do not need to be normalized and they do not need to be of the same size [3].

All in all the feature space is composed of features of various dimensions. The optimal transport
feature is a vector for which each component is the value of the norm of the cost between two
varieties. Therefore if the dataset is composed of k varieties, the optimal transport is a vector with
k components. The other features can be scalars as fractal dimension or fractional anisotropy, 3
components vectors as RGB means and RGB variance, or a vector of the same dimension as the
optimal transport for mutual entropy.

2.1.5 Classification setups

In this part, we detail the machine learning classification setups tested to assess distinctness
with both apple datasets presented in the previous section.

Multi-class classification A first setup is simply to perform a multi-class classification between the
varieties allowing to assess if the varieties are distinguishable between them. This is a “one versus
one” approach where the tested variety is tested against all the existing ones individually. For
this, we simply separated an jnitial dataset of images to create 2 sub-datasets: a test sub-dataset
containing of the images, and a training sub-dataset containing the rest. These 2 sub-sets were
used respectively to train the supervised classifiers and to test their efficiency to distinguish the
different varieties. For this classification, two sets of features were used, a set containing all
features and the other set containing only the most relevant features among all the tested
features.

The second classification setup was used to test if our model was able to differentiate the two
apple datasets. This is a “one versus all” approach where the one tested corresponds to the
variety compared with all the existing registered varieties at once. We gathered the 2 datasets
presented previously, thus constituting a dataset of 5333 images, with 4040 images of Gala



mutants and 1293 non Gala mutants which are our 2 classes. We separated the dataset into test
and training sub-sets with a 50-50 ratio. To mimic the procedure experts currently follows for
apple variety testing, the algorithm made an individual prediction on each apples and a majority
voting over subsets of 30 apples.

2.2 Classification results
2.2.1  Multi class classification between Gala mutant varieties

We first performed the multi-class classification between Gala mutant apples only, in order to
verify that it was indeed possible to distinguish these 9 registered varieties between them. We
figst separated the data into test and training sets with a ratio of for the training set, then we
used 3 different supervised classifiers: Support vector machine (SVM), Random Forest and Linear
Discriminant Analysis (LDA).

The classification results show that the Gala mutant varieties are distinguishable in terms of
color. These results are of the same order of magnitude for the three tested classifiers. However,
SVM gives an F1l-score over 97%, and perform slightly better than others.

A forward analysis, testing the performance of each individual type of features, identified that
the best features for the classification happened to those from optimal transport. These features
alone do not allow us to obtain a fully satisfactory classification, however they are relatively
efficient since they yield a classification accuracy of about 50%. Since our dataset has 9 distinct
classes, a random classification of the data would give 11%. accuracy. The relative superiority of
optimal transport toward the other features can be explained since all histograms share the same
elongated shape centered on red-yellow barycenter.

2.2.2  Multi class classification between non Gala mutant varieties

In a second step, we performed the same classification method as in the previous section, this
time using the dataset composed of the non-Gala mutant varieties.

For this dataset, the results are also very satisfactory, with F1-scores close to 90%. Once again,
the SVM with polynomial kernel gives the best results with a precision score of 93.76%. For the Non-
Gala mutants, these results show that the varieties composing this dataset are clearly
distinguishable as also confirmed by the experts from EO since these are registered as official
varieties. The precision score is logically found a bit lower than for the non-Gala mutant datasets
since the contrast in color between varieties is lower.

Again we performed a forward analysis which established optimal transport as providing the
most significant features. The classification only based on these optimal transport features reached
their best results with SVM with polynomial kernel of degree 3, which gives a precision score of
71.25%. Globally the result observed with the well contrasted dataset non-Gala mutant are robustly
conserved when the method is transposed to less contrasted apples such a the one of the Gala
mutants. This demonstrates the high potential of a machine learning framework equipped with
color features for variety testing.

2.2.3  Binary classification with the 2 collected datasets

Once we observed that both datasets were well distinguishable, we focus on the most difficult
dataset and explore the potential of our framework to determine whether a set of test images
corresponds to a certain Gala mutant or not. To mimic the way experts perform their scoring, we
decided to focus not only on individual classification of apples but also on a group classification
from the same variety. To do so, we selected images from the test data and by a random draw
without replacement of apples of the same variety, to create subsets of 30 apples. This number
exactly corresponds to the size of the group of apples chosen by the experts when they observe



groups of apple for distinctness. Once our model is trained on classification of individual apple
images, we tested its efficiency on the subsets through majority voting.

We get 100% F1-score with all classifiers when all features are employed. Consistent with the
results of the previous section optimal transport again appeared as the most important features in
a forward analysis. With optimal transport only, Random Forest gives the best results in individual
classification with a precision of 88.13% and an F-score of 75.67%.

2.3 Conclusion and perspectives on phenotyping

In this work, we have considered, for the first time to the best of our knowledge, a variety testing
problem with a machine learning approach. We have introduced on a use-case dedicated to apples
a supervised learning scheme to identify if a new candidate for variety registration could be
considered as distinct or not from an existing set of varieties. Two datasets corresponding to highly
contrasted varieties and varieties contrasted at the limit of what would be considered as distinct
have been tested. Distinctness was found in perfect accordance with the human expert. This
demonstrates the possibility to introduce more objective and higher-throughput approaches in the
domain of variety testing. We found that among the tested features optimal transport was
producing the most adapted features, i.e. which contributed the most in the correct decision
making. It is specially important to notice that all these results were obtained based on color
histogram, i.e. with a total loss of spatial information.

This first step opens various ways of further investigations. A limit of the result presented so far
stands in the absence of negative data, i.e. non registered varieties in our dataset. Access and
diffusion of such historical data is complex from a legal point of view when dealing with EO. A
workaround approach could consist in simulating fake non registered varieties from an existing
dataset. This requires to enlarge the datasets used in this article and we are currently investigating
this direction. On the machine learning side, several alternatives could be considered. We selected
classical shallow learning algorithms (SVM, random forest and LDA). We produced binary decisions
in accordance with the essence of distinctness which is a binary trait. All the tested algorithms could
also provide probabilities and confidence intervals which would provide more insights. Such output,
although not currently in practice in variety testing would nonetheless be very useful specially to
provide arguments to the breeders when new variety candidates are rejected by EO. The set of
hand crafted features could be extended to additional color features mentioned in the related work
section. Also, all the analysis were performed in the native RGB color space and other color spaces
more suitable to fit with the human perception could also be tested with the approach introduced
in this paper. Alternatively deep learning approaches could be considered. An obvious match would
be with generative adversarial networks (GAN) where the discriminator network could serve to
decide if a variety is distinct from another after the GAN would have been trained to reproduce
images of already registered varieties.

Varieties are registered based on a large set of parameters. Here, we considered only color, but
it would be interesting to extend the scheme to incorporate more parameters. On apple it could be
color texture (stripes on apple skin) as well as shape, other DUS traits or resistance to pests and
diseases. With such extended features, the apple variety would be represented as point clouds
similarly to what was found here for color histogram. In this sense, the illustration provided in this
report on color would actually be extendable without any effort to any kind of characteristics to be
tested for automation in variety testing. The proposed approach specially with optimal transport
can be adapted to higher dimensional feature spaces and thus offers a generic framework to extend
the quest for automation in variety testing.



General conclusions and perspectives

The imoddus apple mutant project has led to important results. Initially focused on genetic
and epigenetic approaches, we have reoriented it to make much more room for
phenotyping, which makes it possible to envisage applications in the fairly short term to
improve the distinction of colored apple mutants. But before delivering a protocol entirely
based on new phenotyping tools there are still few studies to do mainly on a statistical point
of view. We are already preparing these future steps.

We knew from the beginning that the genetic and epigenetic approaches would be more
ambitious and would deliver lower TRL outputs. In the first part of the project, Wugian
Wang, in her PhD thesis, has produced a lot of data and obtained preliminary results but
unfortunately, we lacked a bioinformatician to analyze in depth the methylome sequencing
data generated. S. Hatira, hired by the project, developed the BISEPS pipeline and an
intuitive and user-friendly interface allowing biologists to analyze big sets of data and test
various parameters. At the very end of the project, thanks to these tools, we have been able
to identify a set of stable epigenetic marks which characterize the Gala colored mutants
under study. Further statistical analyses are underway to fully exploit the generated data
sets and get more marks. The next steps are now performed in the frame of the INVITE
project to 1) integrate the transcriptomic and genetic data and 2) test the tools on the same
set of Gala mutants in various environments.



